
Sample examinations Calculus I (201-NYA-05) Autumn 2012

1. Given the graph of f below, evaluate each of the following. Use ∞, −∞ or
“does not exist” where appropriate.

a. lim
x→−2

f(x)

b. lim
x→0

f(x)

c. f ′(4)

d. lim
x→∞

f(x)

e. lim
h→0

f(6 + h)− f(6)
h

f. lim
x→2

[f(x)− 2]2

x

y

−2 2 4 6

−2

2

4

y = f(x)

2. Evaluate each of the following limits.

a. lim
x→5

50− 2x2

2x2 − 9x− 5
b. lim
x→−∞

√
4x6 − 9x

x3
c. lim
x→∞

(ex − e2x)

d. lim
x→3+

|6− 2x|
√
x− 3

e. lim
x→0

6x

sin 3x cos 4x

3. Find and classify the discontinuities of the function f defined by

f(x) =



x2 − 4

x2 − x− 6
if x 6 −1 and x 6= −2,

1
4
x+ 1 if −1 < x < 5, and

1

x2 − 10x− 24
if x > 5 and x 6= 12.

4. Use the limit definition of the derivative to find f ′(x), where f(x) =
1

x2 + 1
.

5. Find dy
dx

for each of the following.

a. y = 5cot x + sec(4x2)− 2eπ+1 b. y = tan3(xex)

c. y =

√
x3 sin 2x

(x+ 1)5
d. exy − 3x2 − 3y2 = 2 e. y =

(
2x− 3

cosx

)x
6. Consider the curve defined by xy2 − x3y = 6.

a. Prove that
dy

dx
=

3x2y − y2

2xy − x3
.

b. Find all points on the curve whose x-coordinate is 1, and write an equation of
the tangent line at each of these points.

7. Consider the function defined by f(x) = x3 − 7x− 10.
a. Show that f has a zero in the interval [−1, 4 ].
b. Find all numbers in the interval (−1, 4 ) which satisfy the conclusion of the
Mean Value Theorem.
c. Use Rolle’s Theorem to show that there is a number c in (−1, 3 ) such that
f ′(c) = 0.

8. A conical tank with its vertex down has a diameter of 8m and a depth of 16m.
Water flows into the tank at a rate of 5 cubic metres per minute. Find the rate at
which the water level is rising when the water is 10m deep.

9. Find the absolute extrema on the interval [ 1, e4 ] of the function f defined by

f(x) =
log x
√
x

.

10. Sketch the graph of the function f defined by

f(x) =
(2x+ 3)(x− 3)2

x3
= 2−

9

x
+

27

x3
.

Include all features and points of interest in your solution.

11. The graph below is of a function f ′ on [ 0, 6 ].

x

y

−1

1

2

1 3 5

y = f ′(x)

a. Give the interval(s) on which f is decreasing.
b. Give the interval(s) on which the graph of f is concave up.
c. Give the value of x at which f has a local maximum.
d. Give the value of x at which f assumes its global maximum value on [ 0, 6 ].
e. Give the x-coordinate(s) of all point(s) of inflection of the graph of f .

12. A closed cylindrical tank with a flat bottom and an inverted hemispherical top
is to have a volume of 13π. Find the dimensions that will minimize the cost of the
metal to make the tank, and state the resulting ratio h/r of height to radius.

r

h

13. Find x(t) if x′′(t) = et − 3 cos t+ 6t, x′(0) = 3 and x(0) = 1.

14. Evaluate each of the following integrals.

a.
∫

(6ex − 3
√
x7 + π5) dx b.

∫
(x− 1)2

x3
dx

c.
∫ 1

2
π

1
4
π

sin2 x+ cosx

sin2 x
dx d.

∫ 5

0
|x2 − 9| dx

15. Find the derivative with respect to x of y =

∫ 1

√
x

t

t2 + 1
dt.

16. Express ∫ 3

1
(x2 − x+ 3) dx

as a limit of Riemann sums, and use summation formulæ and basic properties of
limits to evaluate the integral.
No marks if you use the Fundamental Theorem of Calculus to evaluate the integral.

17. Evaluate the integral ∫ 1

−2

√
4− x2 dx

by interpreting it in terms of area.

18. Suppose that lim
x→∞

f ′(x) = 0.

a. Must the graph of f have a horizontal asymptote? Justify your answer.
b. If f is a rational function, must the graph of f have a horizontal asymptote?
Justify your answer.
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1. Inspecting the graph of f gives
a. lim
x→−2

f(x) = 0, b. lim
x→0

f(x) =∞, c. f ′(4) is undefined,

d. lim
x→∞

f(x) = 0, e. lim
h→0

f(6 + h)− f(6)
h

= −1, f. lim
x→2

[f(x)− 2]2 = 1.

2. a. Since
50− 2x2

2x2 − 9x− 5
=

2(5− x)(5 + x)

(x− 5)(2x+ 1)
=
−2(5 + x)

2x+ 1

for x 6= 5,

lim
x→5

50− 2x2

2x2 − 9x− 5
= lim
x→5

−2(5 + x)

2x+ 1
= − 20

11

by independence and direct substitution.
b. Since x3 = −

√
x6 for x < 0, and 9/x5 → 0 as x→ −∞,

lim
x→−∞

√
4x6 − 9x

x3
= − lim

x→−∞

√
4− 9/x5 = −2.

c. Since e2x →∞ and e−x → 0 ad x→∞, it follows that

lim
x→∞

(ex − e2x) = lim
x→∞

(
e2x(e−x − 1)

)
= −∞.

d. Since |3− x| = x− 3 if x > 3, it follows that

lim
x→3+

|6− 2x|
√
x− 3

= lim
x→3+

2(x− 3)
√
x− 3

= 2 lim
x→3+

√
x− 3 = 0,

by independence and direct substitution.
e. Since (sin t)/t → 1 as t → 0, direct substitution and arithmetical limit laws
imply that

lim
x→0

6x

sin 3x cos 4x
= 2 lim

x→0

{(
sin 3x

3x

)−1 1

cos 4x

}
= 2.

3. Since a rational function is continuous on every interval contained in its do-
main, f is continuous at least on (−∞,−2 ), (−2,−1 ), (−1, 5 ), ( 5, 12 ) and
( 12,∞ ), and certainly discontinuous at −2 and 12 (neither of which belongs to
the domain of f ). It remains to determine the nature of the discontinuities of f at
−2 and at 12, and to investigate the continuity of f at −1 and at 5. Now

lim
x→−2

f(x) = lim
x→−2

(x− 2)(x+ 2)

(x− 3)(x+ 2)
= lim
x→−2

x− 2

x− 3
= 4

5

by independence and direct substitution, f has a removable discontinuity at −2,
and since x2 − 10x− 24 = (x+ 2)(x− 12)→ 0± as x→ 12±,

lim
x→12±

f(x) = lim
x→12±

1

x2 − 10x− 24
= ±∞,

so f has an infinite discontinuity at 12. Next, from

f(−1) = lim
x→−1−

f(x) = 3
4

and lim
x→−1+

f(x) = 3
4

,

it follows that f is continuous at −1. Finally,

lim
x→5−

f(x) = 9
4

and f(5) = lim
x→5+

f(x) = − 1
49

by direct substitution, so f has a jump discontinuity at 5 (where f is continuous
from the right).

4. Since

f(t)− f(x) =
1

t2 + 1
−

1

x2 + 1
=

x2 − t2

(t2 + 1)(x2 + 1)

=
(x− t)(x+ t)

(t2 + 1)(x2 + 1)
,

it follows from the definition of the derivative of a function, that

f ′(x) = lim
t→x

f(t)− f(x)
t− x

= lim
t→x

−(x+ t)

(t2 + 1)(x2 + 1)
=

−2x
(x2 + 1)2

by independence and direct substitution.

5. a.
dy

dx
= −(log 5)5cot x csc2 x+ 8x sec(4x2) tan(4x2)

b.
dy

dx
= 3ex(x+ 1) tan2(xex) sec2(xex)

c. Logarithmic differentiation gives

dy

dx
= y

d

dx
log|y| = 1

2
y
d

dx

{
3 log|x|+ log|sin 2x| − 5 log|x+ 1|

}

= 1
2

√
x3 sin 2x

(x+ 1)5

{
3

x
+ 2 cot 2x−

5

x+ 1

}
.

d. Differentiating implicitly with respect to x gives

yexy + xexy
dy

dx
− 6x− 6y

dy

dx
= 0, or

dy

dx
=

6x− yexy

xexy − 6y
.

e. Logarithmic differentiation gives

dy

dx
= y

d

dx
log|y| = y

d

dx

{
x
(
log|2x− 3| − log|cosx|

)}
=

(
2x− 3

cosx

)x{
log

2x− 3

cosx
+

2x

2x− 3
+ x tanx

}
6. a. Differentiating the relation xy2−x3y = 6 implicitly with respect to x gives

y2 + 2xy
dy

dx
− 3x2y − x3

dy

dx
, or

dy

dx
=

3x2y − y2

2xy − x3
,

as required.
b. If xy2 − x3y = 6 and x = 1 then y2 − y = 6, or (y + 2)(y − 3) = 0, and
so y = −2 or y = 3. Now,

dy

dx

∣∣∣∣x=1,
y=−2

= 2, and so y + 2 = 2(x− 1), or 2x− y = 4,

is an equation of the line tangent to the given curve at the point (1,−2). Also,

dy

dx

∣∣∣∣x=1,
y=3

= 0, and so y = 3

is an equation of the line tangent to the given curve at the point (1, 3).

7. a. Since f is a polynomial function, f is continuous on R and therefore on
[−1, 4 ]. Now f(−1) = −4 < 0 < 26 = f(4), so the Intermediate Value
Theorem implies that there is a real number r in (−1, 4 ) such that f(r) = 0, as
required.
b. Since f is a polynomial function, it satisfies the hypotheses of the Mean Value
Theorem on the interval [−1, 4 ]. The equation f(4)−f(−1) = f ′(ξ)

(
4−(−1)

)
is equivalent to 30 = 5(3ξ2 − 7), or ξ2 = 13

3
, and so 1

3

√
39 is the only number

in (−1, 4 ) which satisfies the conclusion of the Mean Value Theorem in this case.
c. Since f is a polynomial function, it satisfies the hypotheses of Rolle’s Theorem
on the interval [−1, 4 ]. Now f(−1) = −4 = f(3), so Rolle’s Theorem implies
that there is a real number c in (−1, 3 ) such that f ′(c) = 0.

8. The volume of water in the tank is V = 1
3
πr2h (cubic metres), where h is the

depth of the water, r is the radius of its upper surface, and h = 4r by similarity.
By the Chain Rule,

5 =
dV

dt
= 4πr2

dr

dt
= πr2

dh

dt
.

When the water is 10m deep, πr2 = 25
4
πm2, and so dh

dt
= 4/(5π)m/min.

Therefore, the water level in the tank is rising at a rate of 4/(5π) metres per minute
when the water is 10 metres deep.

9. Since

f ′(x) =
1

x
√
x
−

log x

2x
√
x

=
2− log x

2x
√
x

,

f ′(x) = 0 if, and only if, log x = 2, or x = e2, so e2 is the critical number of f .
Now f(1) = 0, 0 < f(2) = 2/e < 1 and 0 < f(4) = 4/e2 = (2/e)2 < 2/e,
so the largest value of f on [ 1, e4 ] is f(e2) = 2/e and the smallest value of f on
[ 1, e4 ] is f(1) = 0.
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10. The domain of f is R\{0}, and f(x)→ ±∞ as x→ 0±, so the y-axis is the
vertical asymptote of the graph of f (and f has no global extrema). As x→ ±∞,
f(x) → 2, so the line defined by y = 2 is the horizontal asymptote of the graph
of f . The axis intercepts of the graph of f are (− 3

2
, 0) and (3, 0). Since

f ′(x) =
9

x2
−

81

x4
=

9(x2 − 9)

x4

is positive if |x| > 3 and negative if |x| < 3 and x 6= 0, f is increasing on
(−∞,−3 ) and on ( 3,∞ ), and decreasing on (−3, 0 ) and on ( 0, 3 ), with a
local maximum at (−3, 4) and a local minimum at (3, 0). Next, since

f ′′(x) = 9

{
−

2

x3
+

36

x5

}
=

18(18− x2)
x5

is positive if x < −3
√
2 or 0 < x < 3

√
2 and negative if −3

√
2 < x < 0 or

x > 3
√
2, it follows that the graph of f is concave up on (−∞,−3

√
2 ) and on

( 0, 3
√
2 ), and concave down on (−3

√
2, 0 ) and on ( 3

√
2,∞ ), with points of

inflection at (±3
√
2, 2 ∓ 5

4

√
2). The graph of f meets its horizontal asymptote

where

0 = −
9

x
+

27

x3
=

9(3− x2)
x3

,

i.e., at (±
√
3, 2). Below is a sketch of the graph of f , with unit lengths marked

along the coordinate axes, the horizontal asymptote drawn as a dashed line and the
points of interest emphasized.

x

y

y = 2

y =
(2x+ 3)(x− 3)2

x3

11. a. Since the function f is differentiable and therefore continuous on [ 0, 6 ],
and since f ′(x) is negative if 0 < x < 2 or 4 < x < 6, it follows that f is
decreasing on [ 0, 2 ] and on [ 4, 6 ].
b. Since f ′ is increasing on [ 0, 3 ], the graph of f is concave up on [ 0, 3 ].
c. Since f is continuous on [ 0, 6 ], f ′ > 0 on ( 2, 4 ), f ′(4) = 0 and f ′ < 0 on
( 0, 2 ) and on ( 4, 6 ), it follows that f has a local maximum at 4 and nowhere else
in ( 0, 6 ).
d. Since f is continuous on [ 0, 6 ], its maximum value occurs at (at least) one of 0,
2, 4, 6 (the first and last of which are endpoints and the second and third of which
are critical numbers). Next, observe that∫ 2

0
f ′(x) dx < −2,

∫ 4

2
f ′(x) dx < 2 and

∫ 6

4
f ′(x) dx < −2,

because each of the first and third integrals is the opposite of the area of a region
which contains a triangle of base 2 and height 2, and the second integral is the area
of a region which is contained in a rectangle of base 2 and height 2. Since, by the
Fundamental Theorem of Calculus,

f(x) = f(0) +

∫ x

0
f ′(t) dt,

the displayed inequalities imply that f(0) is greater than f(2), f(4) and f(6);
therefore, the largest value of f on [ 0, 6 ] occurs at 0.
e. Since f ′ is increasing on [ 0, 3 ] and decreasing on [ 3, 6 ], the graph of f changes
concavity and therefore has a point of inflection at 3.

12. The volume of the can is given by

13π = πr2h− 2
3
πr3, and so h = 13r−2 + 2

3
r.

The cost of the tank (if all of its parts are made from equally costly material) is
proportional to its surface area, S, which is given by

S = 3πr2 + 2πrh = 3πr2 + 2πr(13r−2 + 2
3
r) = 13

3
π(r2 + 6r−1)

for r > 0. Now
dS

dr
= 13

3
π(2r − 6r−2) = 26

3
πr−2(r3 − 3)

has the unique critical number 3
√
3 on ( 0,∞ ), on which

d2S

dr2
= 26

3
π(1 + 6r−3)

is positive. By the Second Derivative Test for global extrema, the least expensive
can has radius 3

√
3 and height 13

3
3
√
3 + 2

3
3
√
3 = 5 3

√
3, so the ratio of height to

radius is 5.

13. If x′′(t) = et − 3 cos t+ 6t and x′(0) = 3 then

x′(t) = 3 +

∫ t

0
(eτ − 3 cos τ + 6τ) dτ = et − 3 sin t+ 3t2 + 2,

and if in addition x(0) = 1 then

x(t) = 1 +

∫ t

0
(eτ − 3 sin τ + 3τ2 + 2) dτ = et + 3 cos t+ t3 + 2t− 3.

14. a. Integrating termwise gives∫
(6ex − x7/3 + π5) dx = 6ex − 3

10
x10/3 + π5x+ C.

b. Expanding the integrand and integrating termwise gives∫
(x− 1)2

x3
dx =

∫
x2 − 2x+ 1

x3
dx

=

∫
(x−1 − 2x−2 + x−3) dx

= log|x|+
2

x
−

1

2x2
+ C.

c. Dividing and integrating termwise gives∫ 1
2
π

1
4
π

sin2 x+ cosx

sin2 x
dx =

∫ 1
2
π

1
4
π

(1 + cscx cotx) dx

= (x− cscx)

∣∣∣∣ 12π
1
4
π

=
(
1
2
π − 1

)
−
(
1
4
π −
√
2
)

= 1
4
π +
√
2− 1.

d. Since |x2 − 9| = 9 − x2 on [ 0, 3 ] and |x2 − 9| = x2 − 9 on [ 3, 5 ], the
interval additivity of the definite integral implies that∫ 5

0
|x2 − 9| dx =

∫ 3

0
(9− x2) dx+

∫ 5

3
(x2 − 9) dx

=
(
9x− 1

3
x3
)∣∣∣∣3

0

+
(
1
3
x3 − 9x

)∣∣∣∣5
3

=
{
(27− 9)− 0

}
+
{(

125
3
− 27

)
−
(
9− 27

)}
= 98

3
.

15. If

y =

∫ 1

√
x

t

t2 + 1
dt = −

∫ √x
1

t

t2 + 1
dt,

then by the Fundamental Theorem of Calculus and the Chain Rule,

dy

dx
= −

√
x

x+ 1
·

1

2
√
x

=
−1

2(x+ 1)
.
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16. If [ 1, 3 ] is divided into n subintervals of equal length then the width of each
subinterval is 2/n and the endpoints of the subintervals are xi = 1 + 2i/n, for
0 6 i 6 n. The corresponding right endpoint sum is

Rn =
2

n

n∑
i=1

{(
1 +

2i

n

)2

−
(
1 +

2i

n

)
+ 3

}

= 2

n∑
i=1

{
4i2

n3
+

2i

n2
+

3

n

}
= 2

{
4

n3
·
1

6
n(n+ 1)(2n+ 1) +

2

n2
·
1

2
n(n+ 1) + 3

}
= 2

{
2

3

(
1 +

1

n

)(
2 +

1

n

)
+

(
1 +

1

n

)
+ 3

}
,

and so ∫ 3

1
(x2 − x+ 3) dx = lim

n→∞
Rn = 2

{
4
3
+ 1 + 3

}
= 32

3
.

17. The integral in question is equal to the sum of the area of a circular sector and
the area of a triangle, as depicted below.

x

y

y =
√
4− x2 (1,

√
3)

The radius of the sector is 2 and its central angle is 2
3
π, so its area is equal to

1
2
(2)2 2

3
π = 4

3
π. The base of the triangle is 1 and its height is

√
3, so its area is

equal to 1
2
(1)(
√
3) = 1

2

√
3. Therefore,∫ 1

−2

√
4− x2 dx = 4

3
π + 1

2

√
3.

18. a. If f(x) =
√
x then the domain of f is [ 0,∞ ) and

lim
x→∞

f ′(x) = lim
x→∞

1

2
√
x

= 0,

but f(x)→∞ as x→∞, so the graph of f does not have a horizontal asymptote.
So the graph of f need not have a horizontal asymptote under the given condition.
(Many other examples are possible; e.g., lnx, or xα, where 0 < α < 1.)
b. If f is a rational function then by division of polynomials, f = p+r, where p is
a polynomial function and r is a proper rational function (p, or r, or both, may be
identically zero). Then r(x)→ 0 as x→∞ (since r is proper) and so r′(x)→ 0
as x → ∞ (since the sign of r′ is eventually constant). Since f ′ = p′ + r′,
this implies that p′ (since it is a polynomial) is identically zero, so p is a constant
and therefore its graph is a horizontal asymptote of the graph of f . So the given
condition does imply that the graph of a rational function must have a horizontal
asymptote. (Other arguments are possible; e.g., by considering the degrees of the
numerator and denominator of f(x) and f ′(x), or by considering the behaviour of
f(1/x) near zero.)
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