
Sample examinations Calculus I (-nya-) Winter 

. Evaluate each of the following limits.

a. lim
x→0+

(
1
x
− 1√

x

)
b. lim

x→−∞

√
x2 − 3

4x+ 1
c. lim

x→0

1
x+ 2

− 2
x+ 4

sinx

d. lim
x→3

2−
√

7− x
x2 − 5x+ 6

e. lim
t→0

log(e+ t)− 1
t

. Find all asymptotes of the curve defined by y =
3ex + 1
5ex − 2

.

. Find all values of a and b, if any, so that the function defined by

f (x) =

x2 + 6x+ 12 if x < −2, and

ax+ b if x > −2,

is differentiable everywhere.

. Determine a ratio f (x) of quadratic polynomials such that

lim
x→∞

f (x) = 1, lim
x→2−

f (x) =∞

and lim
x→3

f (x) is defined but f (3) is undefined.

. Find
dy

dx
for each of the following.

a. y =
x9

9
− 9
x9 + 9x + log9(x) + 9√x+ 99 b. y =

(logx)(sec(2x − 1)
7

c. y =

√
(ex − 3)2 +

x
sinx

d. y = tan(x9 + xx)

. If g ′(3) = 2 and the slope of the line tangent to the graph of y = xg(x) at
the point where x = 3 is 14, determine the value of g(3).

. Allan and Balla both leave the same spot at the same time. Allan walks
east at a rate of 3

2 km/h, while Balla jogs 1
3π radians north of east at a rate of

4km/h. How fast is the distance between them increasing after two hours?

. Find an equation of the line tangent to the curve defined by

x2 + y2 = (2x2 + 2y2 − 1)2

at the point
(
0, 1

2

)
.

. a. State the mean value theorem.
b. Let f be an everywhere twice-differentiable function with at least two
critical numbers. Prove that f ′′ has at a root.

. Find the intervals of monotonicity and all local extreme values of

y = 9x2/3(x − 20).

. Find the intervals of concavity and all points of inflection of the graph
of f , where f (x) = (1 + sinx)2/3.

. If possible, sketch the graph of a function f with domain R\{0} and the
following properties. The derivative f ′(x) is positive if x < −5 or x > 6, and
negative if −5 < x < 0 or 0 < x < 6. The second derivative f ′′(x) is positive
if x < −5, −5 < x < −3 or 0 < x < 10, and negative if −3 < x < 0 or x > 10.
Also, f (−1) = f (2) = f (8) = 0, f (−5) = 7, f (−3) = 5, f (6) = −3, f (10) = 3,

lim
x→−∞

f (x) = 1, lim
x→0−

f (x) = −∞ and lim
x→∞

f (x) = 6.

Note. — The foregoing question was on the exam. On the department web
page, the question on the exam is replaced by one in which the x intercepts
of the curve are −1, 2 and 9, and the value of f at 10 is changed to f (10) = 4.
As the two versions have (importantly) different solutions, each is included.

. A 600m by 800m rectangular park has a straight bicycle path cutting
through it, one side of which is a diagonal of the park; next to this side of
the path will be a rectangular playground in the park, with sides parallel
to those of the park. What dimensions of the playground will maximize its
area?

. Verify the integral formulaU
dx

(x2 + 4)3/2
=

x

4
√
x2 + 4

+C.

. Evaluate the integral
3U
3
2

√
9− x2 dx

by interpreting it in terms of area.

. Express the integral
πU
0

xcos(2x) dx

as a limit of Riemann sums. For ten bonus marks, evaluate the integral
without using the (second) fundamental theorem of calculus.

. Express

lim
n→∞

{
4
n

n∑
i=1

(
5 +

4
n
i
)

sin
(
2 +

4
n
i
)}

as a definite integral with lower limit 3.

. Evaluate each of the following integrals.

a.
U

(
√
x − 3)2 dx b.

∫
tanϑ − cos2ϑ + secϑ

cosϑ
dϑ

c.

2∫
1

(
ey − 3

y2

)
dy d.

5U
5

cot(3x2 − 9) dx

. Find dy
dx if

yU
0

e−t dt = 4 +

x2U
2

sin2(t) dt.

. Mark each statement as true or false. Justify your answers.

– If lim
x→a

f (x) = lim
x→a

g(x), then lim
x→a

f (x)
g(x)

= 1.

– If f is differentiable at a, then lim
x→a

f (x) exists.

– If f is increasing on [a,b] then f ′(x) > 0 for a < x < b.

– If f and g are continuous on [a,b], then

bU
a

f (x)g(x) dx =

bU
a

f (x) dx

bU
a

g(x) dx.

– If f ′(x) > 0 wherever f (x) is defined, then f is increasing on its domain.
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. a. Since
1
x
− 1√

x
=

(
1√
x
− 1

)
1√
x

, and lim
x→0+

1√
x

=∞,

it follows that

lim
x→0+

(
1
x
− 1√

x

)
=∞.

b. Since (recall that
√
x2 = −x if x < 0)

√
x2 − 3

4x+ 1
= −

√
1− 3/x2

4 + 1/x
, and lim

x→−∞
1
xn

= 0,

for n = 1,2,3, . . ., it follows that

lim
x→−∞

√
x2 − 3

4x+ 1
= − 1

4 .

c. Since
1

x+ 2
− 2
x+ 4

=
−x

(x+ 2)(x+ 4)
, and lim

x→0

x
sinx

= 1,

it follows that

lim
x→0

1
x+ 2

− 2
x+ 4

sinx
= − 1

8 .

d. Since
2−
√

7− x
x2 − 5x+ 6

=
x − 3

2 +
√

7− x
· 1

(x − 3)(x − 2)
,

it follows that

lim
x→3

2−
√

7− x
x2 − 5x+ 6

= 1
4 .

e. By the definition of the derivative,

lim
t→0

log(e+ t)− 1
t

=
d
dx

(logx)

∣∣∣∣∣∣
x=e

=
1
e

.

. Since et → 0 as t→−∞, and

y =
3ex + 1
5ex − 2

=
3 + e−x

5− 2e−x
,

it follows that y → − 1
2 as x → −∞ and y → 3

5 as x → ∞. Moreover, y is

a continuous function of x except at ln
(

2
5

)
, where 3ex + 1 = 11

5 > 0 and

5ex − 2→ 0±; so y → ±∞, as x→ ln
(

2
5

)±
. Thus, the horizontal asymptotes

of of the curve are defined by y = − 1
2 and y = 5

3 , and the vertical asymptote

of the curve is defined by x = ln
(

2
5

)
.

. Let g(x) = ax + b and h(x) = x2 + 6x + 12. Since g and h are polynomial
functions, f is differentiable everywhere if, and only if, g(−2) = h(−2) and
g ′(−2) = h′(−2). Equivalently, −2a+ b = 4 and a = 2, which then gives b = 8.

. As f has a removable discontinuity at 3, the numerator and denominator
of f (x) are divisible by x − 3, and since f has an infinite discontinuity at 2,
the denominator of f (x) is divisible by x−2. Also, since f (x)→ 1 as x→∞,
the numerator and denominator of f (x) have the same leading coefficients,
which may be taken to be 1, as in

f (x) =
(x −α)(x − 3)
(x − 2)(x − 3)

,

where α > 2 to insure that f (x)→∞ as x → 2−. Of such expressions, the
one in which α = 3 is especially simple.

. a. If y =
x9

9
− 9
x9 + 9x + log9(x) + 9√x+ 99, then

dy

dx
= x8 + 81x−10 + 9x log9 + 1

9
9√x−8.

b. If y = 1
7 (logx)(sec(2x − 1), then

dy

dx
= 1

7

(
x−1 sec(2x − 1) + 2(logx)sec(2x − 1)tan(2x − 1)

)
.

c. If y =
√

(ex − 3)2 + x/(sinx), then

dy

dx
=

2ex(ex − 3) + 1/(sinx)− x(cosx)/(sinx)2

2
√

(ex − 3)2 + x/(sinx)
.

d. If y = tan(x9 + xx), then

dy

dx
= (9x8 + xx(logx+ 1))sec2(x9 + xx),

since d
dx (xx) = xx d

dx (x logx) = xx(logx+ 1).

. Since g ′(3) = 2, and

14 =
d
dx

(
xg(x)

)∣∣∣∣∣∣
x=3

= g(3) + 3g ′(3) = g(3) + 6,

it follows that g(3) = 8.

. By the law of cosines, the distance between the pair after t hours is√(
3
2

)2
+ 42 − 2 · 3

2 · 4cos
(

1
3π

)
· t = 7

2 t,

which is increasing at a rate of 7
2 km/hr after two hours (or any time t > 0).

. The given equation is equivalent to

0 = (2r2 − 1)2 − r2 = (2r + 1)(r − 1)(2r − 1)(r + 1),

where r is the distance between (x,y) and the origin, so the curve is the
union of two circles, of radii 1

2 and 1, each centred at the origin. Therefore,

the tangent line at the point
(
0, 1

2

)
is horizontal, with equation 2y = 1.

. a. If a < b, the function f is continuous on the closed interval [a,b] and
differentiable on the open interval (a,b), then there is a real number ξ such
that a < ξ < b and f (b)− f (a) = f ′(ξ)(b − a).
b. As f is twice-differentiable and has two critical numbers, there are real
numbers a < b such that f ′(a) = f ′(b) = 0. The mean value theorem, applied
to f ′ on [a,b], yields a real number ξ such that a < ξ < b and 0 = f ′′(ξ)(b−a),
or equivalently, f ′′(ξ) = 0, since a , b. Therefore, f ′′ has a root.

. If y = 9x2/3(x − 20) = 9(x5/3 − 20x2/3) then

dy

dx
= 9

(
5
3x

2/3 − 40
3 x
−1/3

)
= 15x−1/3(x − 8),

which is zero if x is 8, undefined if x is zero, positive if x < 0 or x > 8
and negative if 0 < x < 8. Therefore, y is increasing on (−∞,0] and on
[8,∞) (not on the union (−∞,0] ∪ [8,∞) since, for example −1 < 9 but
f (−1) = −189 > −297 3√3 = f (9)), and y is decreasing on [0,8], with a local
maximum at the origin and a local minimum at (8,−432).

. If f (x) = (1 + sinx)2/3 then

f ′(x) =
2cosx

3(1 + sinx)1/3
,

provided x , 3
2π+ 2kπ for any integer k; moreover,

f ′
(

3
2π

)
= lim
x→ 3

2π

(1 + sinx)2/3

x − 3
2π

= lim
t→0

(1− cos t)2/3

t

= lim
t→0

(
2sin2(t/2)

)2/3

t
=

1

22/3
lim
t→0

{
t1/3

( sin(t/2)
t/2

)4/3
}

= 0,

where t = x − 3
2π, and thus f ′

(
3
2π+ 2kπ

)
= 0 for any integer k. Next,

f ′′(x) = 2
3

(
−(sinx)(1 + sinx)−1/3 − 1

3 (cosx)2(1 + sinx)−4/3
)

= −2
9
· 3sin2 x+ 3sinx+ cos2 x

(1 + sinx)4/3
= −2

9
· 2sin2 x+ 3sinx+ 1

(1 + sinx)4/3

= − 2(2sinx+ 1)

9(1 + sinx)1/3
,


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provided x , 3
2π+ 2kπ for any integer k. Moreover,

f ′′
(

3
2π

)
= lim
x→ 3

2π

{
2

3(1 + sinx)1/3
· cosx

x − 3
2π

}
is undefined, since

lim
x→ 3

2π
(1 + sinx)1/3 = 0 and lim

x→ 3
2π

cosx

x − 3
2π

= lim
t→0

sin t
t

= 1,

where t = x − 3
2π, and thus f ′′

(
3
2π+ 2kπ

)
is undefined for any integer k.

Since 1 + sinx is never negative, where f ′′(x) is defined and non-zero its
sign is opposite that of 2sinx+ 1. So f ′′(x) > 0 if −1 < sinx < − 1

2 , i.e., where

7
6π < x − 2kπ < 3

2π or 3
2π < x − 2kπ < 11

6 π,

for some integer k, and f ′′(x) < 0 if sinx > − 1
2 , i.e., where

− 1
6π < x − 2kπ < 7

6π,

for some integer k; otherwise, f ′′(x) is zero or undefined. It follows that
the graph of f is concave up on the intervals

[
7
6π+ 2kπ, 11

6 π+ 2kπ
]
, where

k is an integer, and concave down on the intervals
[
− 1

6π+ 2kπ, 7
6π+ 2kπ

]
,

where k is an integer. The curve has points of inflection at
(

7
6π+ 2kπ, 3√ 1

4

)
and

(
11
6 π+ 2kπ, 3√ 1

4

)
, where k is an integer.

. It is not possible to sketch the graph because there is no such function.
For any such function, the mean value theorem implies that there is a real
number α such that 6 < α < 8 and 3 = 2f ′(α), a real number β such that
8 < β < 10 and 3 = 2f ′(β), and a real number γ such that α < γ < β, and
0 = f ′(β)− f ′(α) = f ′′(γ)(β −α) > 0, which is plainly absurd.

In the “Trumped up” version of the exercise, which was not on the exam,
the largest x intercept is changed to 9 and f (10) is changed to 4. A sketch
of part of the graph of one such function is displayed below.

x

y

3

5

7

−3

−5 −3 6 10

. In the figure below, the outer rectangle represents the park and the
shaded rectangle represents the playground, in units of 200 metres.

4

x

3

y

By similarity, 4y = 3(4− x), and the area of the playground is

xy = 3
4x(4− x) = 3− 3

4 (x − 2)2,

which is maximized if x = 2, or 400 metres, and y = 3
2 , or 300 metres (the

largest area being 3, or 120,000 square metres).
Alternatively, observe that the area of the playground is a quadratic

function of each side which is zero at the extremes and otherwise positive,
so it is maximized if each side is half the corresponding side of the park.

. Since

d
dx

{
x

4
√
x2 + 4

}
=

1

4
√
x2 + 4

− x2

4(x2 + 4)3/2
=

1

(x2 + 4)3/2
,

it follows that U
dx

(x2 + 4)3/2
=

x

4
√
x2 + 4

+C.

. The integral is the area of the region shaded in the figure below.

3
2

( 3
2 ,

3
2
√

3)

x

y

3

y =
√

9− x2

1
3π

The region is the difference of a circular sector of radius 3 and angle
1
3π, and a triangle of base 3

2 and height 3
2
√

3. The area of the sector is
1
2 · 3

2 1
3π = 3

2π and the area of the triangle is 1
2 ·

3
2 ·

3
2
√

3 = 9
8
√

3. Therefore,

3
2
√

3U
3
2

√
9− x2 dx = 3

2π −
9
8
√

3.

. If the interval [0,π] is divided into k subintervals of equal length, then
the length of each subinterval is π/k and the endpoints of the subintervals
are πj/k for j = 0,1,2, . . . , k. The Riemann sums obtained by evaluating the
integrand at the right endpoint of each subinterval are

Rk =
π
k

k∑
j=1

πj

k
cos

(2πj
k

)
, and

πU
0

xcos(2x) dx = lim
k→∞

Rk .

To evaluate the limit, first note that the sum and difference identities of the
sine function give

2sin
(

1
2β

)
cos(βi) = sin

(
(i + 1

2 )β
)
− sin

(
(i − 1

2 )β
)
,

and then summing over i = j, j + 1, j + 2, . . . , k gives

2sin
(

1
2β

) k∑
i=j

cos(βi) = sin
(
(k + 1

2 )β
)
− sin

(
(j − 1

2 )β
)
.

Let β = 2π/k and sum over j = 1,2,3, . . . , k; then 2sin(π/k)Rk is π/k2 times

k sin
(
(k + 1

2 )2π/k
)
−

k∑
j=1

sin
(
(j − 1

2 )2π/k
)
,

or

k sin(π/k)−
k∑
j=1

sin(2πj/k −π/k) ,

and by symmetry (cancelling terms corresponding to j and to k + 1− j) the
second sum is equal to zero. So if k = 2,3,4, . . . , then

Rk =
π2

k2 ·
k sin(π/k)
2sin(π/k)

=
π2

2k
, and hence

πU
0

xcos(2x) dx = lim
k→∞

Rk = 0.

. If the interval [3,7] is divided into n subintervals of equal length, then
the length of each subinterval is 4/n and the endpoints of the subintervals
are 3 + 4i/n. In addition, 5 + 4i/n = (3 + 4i/n) + 2 and 2 + 4i/n = (3 + 4i/n)−1,
for i = 0,1,2, . . . ,n. Hence, among many possibilities,

7U
3

(x+ 2)sin(x − 1) dx = lim
n→∞

{
4
n

n∑
i=1

(
5 +

4
n
i
)

sin
(
2 +

4
n
i
)}

.


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. a. Since (
√
x − 3)2 = x − 6

√
x+ 9, it follows thatU

(
√
x − 3)2 dx = 1

2x
2 − 4x

√
x+ 9x+C.

b. Writing (tanϑ − (cosϑ)2 + secϑ)/ cosϑ = secϑ tanϑ − cosϑ + sec2ϑ, gives∫
tanϑ − cos2ϑ + secϑ

cosϑ
dϑ = secϑ − sinϑ + tanϑ +C.

c. Integrating by inspection gives

2∫
1

(
ey − 3

y2

)
dy =

(
ey +

3
y

)∣∣∣∣∣∣
2

1

= e2 − e − 3
2 .

d. If a lies in the domain of f , then
aT
a
f = 0, so the integral is zero.

. Writing the given equation as

yU
0

e−t dt −
x2U
2

sin2(t) dt = 4,

gives (by implicit differentiation and the fundamental theorem of calculus)

dy

dx
= −−2x sin2(x2)

e−y
= 2xey sin2(x2).

. – If f (x) = x2 and g(x) = x, then

lim
x→0

f (x) = lim
x→0

g(x) = 0, but lim
x→0

f (x)
g(x)

= lim
x→0

x = 0.

So the statement is false.
– By the continuity of differentiable functions, if f is differentiable at a

then lim
x→a

f (x) = f (a). So the statement is true.

– The cube root function is increasing on [−1,1] but not differentiable at 0,
so the statement is false.
In fact, it is not difficult to define a function f which is differentiable and
increasing on [0,1] (i.e., f (x) < f (y) if 0 6 x < y 6 1), and satisfies f ′(x) = 0
for 99.999999999999999999999999999999999999999999999999999%
of the values of x in [0,1]. (Doing so is left as an exercise.)

– The statement in is false, since
1U
0

x2 dx = 1
3 , but

1U
0

x dx ·
1U
0

x dx = 1
2 ·

1
2 = 1

4 ,

– If f (x) = −1/x, then f ′(x) = 1/x2 > 0 wherever f (x) is defined (i.e., where
x , 0). However, f (−1) = 1 > −1 = f (1), so f is not increasing on its
domain. Therefore, the statement in question is false.




