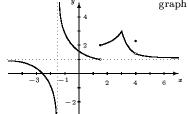
1. The graph of a function f is shown below. By referring to the graph, find the following values:



- (a) f(1.5)
- (b) $\lim_{x \to a} f(x)$
- $\lim_{x \to -\infty} f(x)$
- (d) $\lim_{x \to 1.5^-} f(x)$
- (e) $\lim_{x \to 1.5} f(x)$
- (f) $\lim_{x \to A} f(x)$ (g) One value of x for which f'(x) > 0.
- (h) One value of x for which f(x) is continuous but f'(x) does NOT exist.
- 2. Use a graphic calculator or numerical approximation to estimate
- 3. Evaluate the following limits algebraically:
 - (a) $\lim_{t \to 4} \frac{t-4}{t^2-3t-4}$
- (b) $\lim_{x \to 4} \sqrt{x + \sqrt{x}}$
- (c) $\lim_{x \to 9} \frac{x-9}{\sqrt{x}-3}$
- (d) $\lim_{x \to \infty} \frac{3x^2 + x + 5}{4x^2 + 4x + 1}$
- 4. Consider the function

Use the definition of continuity at a point to:

$$f(x) = \begin{cases} x & \text{if } x \leqslant 1 \\ 2-x & \text{if } 1 < x < 2 \\ 2+x & \text{if } x \geqslant 2. \end{cases}$$
 (a) determine whether or not f is continuous at f is

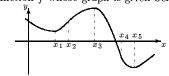
- (b) determine whether or not f is continuous at x=2.
- 5. Use a limit definition of the derivative to find f'(x) for $f(x) = \frac{2}{x-1}$
- 6. Find the derivatives of the following functions. DO NOT simplify your answers.

 - (a) $y = 5x^{1/10} + \frac{8}{\sqrt[4]{x}} + e^{\sqrt{\pi}}$ (b) $g(x) = \frac{\sqrt{x+1}}{\sqrt{x}+1} + \sec^3(5x)$
 - (c) $f(x) = e^{\tan x} \ln x$
- (d) $y = 5^x + \log_3 x$
- (e) $y = \sin(\pi x + 1) + \cos(5x)$
- 7. Let $f(x) = \frac{\cos(x-1)}{x+1}$. Find an equation of the line tangent to the graph of y = f(x) at the point $\left(1, \frac{1}{2}\right)$.
- 8. Given $x^3 + y^3 = 6xy + 1$. (a) Find $\frac{dy}{dx}$. (b) Evaluate $\frac{dy}{dx}$ at (1,0).
- 9. Use logarithmic differentiation to calculate $\frac{dy}{dx}$. Express your answer in terms of x alone. DO NOT simplify.

(a)
$$y = \frac{(2x+1)^3(2x-3)^2}{(x^2+2)^4}$$

(b)
$$y = (x+1)^x$$

- 10. Let $f(x) = 4 3x^{2/3} + 2x$, $-1 \le x \le 2$. Given that f is continuous throughout the interval [-1, 2], the Extreme Value Theorem guarantees that f attains an absolute maximum and an absolute minimum somewhere in that interval. Find them algebraically.
- 11. Sketch the graph of $y = xe^x$, showing intercepts, relative extrema and inflection point(s). Show all supporting work.
- 12. Consider the function f whose graph is given below.



- (a) At what value(s) of x does f'(x) change sign?
- At what value(s) of x does f'(x) have a local (relative) max-
- At what value(s) of x does f'(x) have a local (relative) minimum?
- (d) Sketch a graph of f'(x).
- (e) At what value(s) of x does f''(x) change sign?
- 13. A winch situated on a dock at a point 8 meters above the water level is reeling in a cable at a constant rate of 5 meters per minute.
 - (a) If z (in meters) is the length of cable between the winch and the surface of the water, express z as a function of the angle ϑ (in radians) the cable makes with the water.
 - (b) Calculate the rate at which the angle ϑ is changing at the instant when z = 24 meters. Give your answer correct to 2 decimal places.
- 14. A rectangular box with no top and a square base is to have a fixed volume of 16,000 cm³. Find the dimensions of the box with the least surface area.
- 15. Find the following integrals:

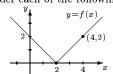
(a)
$$\int \left(\frac{x^4}{3} - \frac{4}{x^3} + \sqrt[4]{x^3} - \pi^4\right) dx$$
 (b) $\int_1^3 \left(x + \frac{1}{x}\right)^2 dx$

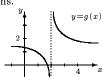
(c)
$$\int \frac{\cos^2 \vartheta + 1}{\cos^2 \vartheta} \, d\vartheta$$

- (c) $\int \frac{\cos^2 \vartheta + 1}{\cos^2 \vartheta} d\vartheta$ (d) $\int (5e^x + xe^5 5\cos x) dx$
- 16. Find the area bounded by the graphs of $y = \sec x \tan x + \sin x$ and y = 0 from x = 0 to $x = \frac{\pi}{3}$.

DO ONLY ONE PROBLEM OF QUESTIONS 17, 18, OR 19.

17. Consider each of the following functions





Fill in the table below:

Function	Derivative from the left of $x = 2$	Derivative from the right of $x = 2$	Derivative at $x = 2$
f(x)			
g(x)			

- 18. A graphics calculator is required for this problem.
 - (a) Use your graphics calculator to sketch the graph of f'(x) if $f'(x) = (\ln x)^2 - 2(\sin x)^4$ for $0 < x \le 7.5$.
 - (b) By using the graph of f'(x), state:
 - (i) where f(x) is increasing and where f(x) is decreasing.
 - (ii) where f(x) is concave up and where f(x) is concave
- 19. Consider a function g(t) (representing distance in centimeters and t representing time in seconds) that has led to the following numerical output when t = 6 seconds.

Δt	-3	-0.3003	-0.1583	-0.0001
$\frac{g(t+\Delta t)-g(t)}{\Delta t}$	0.2310	0.7098	0.1668	0.1667

- (a) What is the average velocity between t = 3 seconds and t = 6seconds?
- (b) From the numerical output, can you estimate the right or left hand derivative of q(t) when t = 6 seconds? Estimate the value of this derivative.
- (c) If the right and left hand derivatives of g(t) are equal, what is the instantaneous velocity of g(t) when t=6 seconds?