1. a. Find the exact value of $\cos \left(\tan ^{-1}\left(\frac{3}{2 x}\right)\right)$.
b. Use your answer to Part a to evaluate

$$
\int \cos \left(\tan ^{-1}\left(\frac{3}{2 x}\right)\right) d x
$$

2. Evaluate each of the following integrals.
a. $\int \frac{11 x^{2}-14 x+8}{(2 x-1)\left(x^{2}+1\right)} d x$
b. $\int_{0}^{\frac{1}{4}} \frac{\arccos (2 x)}{\sqrt{1-4 x^{2}}} d x$
c. $\int x^{5} \cos \left(x^{2}\right) d x$
d. $\int \frac{\sin ^{3}(5 x)}{\cos (5 x)} d x$
e. $\int \frac{\sqrt{1-x^{2}}}{x^{4}} d x$
3. Evaluate each of the following improper integrals.
a. $\int_{5}^{\infty} \frac{d x}{x^{2}-10 x+29}$
b. $\int_{0}^{\frac{1}{4} \pi} \frac{\sec ^{2} x}{\sqrt{\tan x}} d x$
4. Evaluate each of the following limits.
a. $\lim _{x \rightarrow \frac{1}{6} \pi}\left\{\sec (3 x) \sin \left(x-\frac{1}{6} \pi\right)\right\} \quad$ b. $\lim _{x \rightarrow e^{-}}(\ln x)^{\frac{2}{1-\ln x}} \quad$ c. $\lim _{x \rightarrow 0} \frac{\arctan (2 x)}{\arctan (5 x)}$
5. Find the area of the region enclosed by the graphs of

$$
y=\sqrt{x+1} \quad \text { and } \quad y=\frac{1}{2}(x+1)
$$

6. Let \mathscr{R} be the region bounded by the graphs of $y=-x^{2}+3 x$ and $y=x^{2}$. Set up, but do not evaluate, an integral which represents the volume of the solid obtained by rotating the region \mathscr{R} about
a. the y-axis,
b. the line defined by $y=-1$.
7. Find the length of the curve defined by

$$
y=2 \ln \left(\cos \frac{1}{2} x\right), \quad \frac{1}{3} \pi \leqslant x \leqslant \frac{1}{2} \pi
$$

8. Solve the differential equation

$$
x^{2} y^{\prime}+2 x y=3 x
$$

given $y(1)=1$ and $x>0$.
9. Find the limit of the sequence whose general term is

$$
a_{n}=\frac{4}{9^{n}}+3 \arctan \left(\ln \left(n^{2}\right)\right)
$$

or else explain why the sequence diverges.
10. Determine whether each series is convergent. Justify all assertions carefully.
a. $\sum_{n=0}^{\infty} \frac{e^{n}}{1+e^{2 n}}$
b. $\sum_{k=1}^{\infty}\left(1-\frac{1}{\sqrt[3]{k^{2}}}\right)^{k}$
c. $\sum_{j=0}^{\infty}\left(\frac{2 j+1}{3 j+1}\right)^{j}$
d. $\sum_{m=0}^{\infty}\left(1+\frac{7}{4^{m}}\right)$
11. For each of the series below, determine whether it is absolutely convergent, conditionally convergent or divergent. Justify all assertions carefully.
a. $\sum_{n=1}^{\infty} \frac{\cos (\pi n)}{\ln (4 n)}$
b. $\sum_{k=0}^{\infty} \frac{(-1)^{k} 5^{k} k^{2}}{(2 k)!}$
12. Find the sum of each series, or explain why the series diverges.
a. $\sum_{i=1}^{\infty}\left\{\arccos \left(\frac{1}{i+1}\right)-\arccos \left(\frac{1}{i+2}\right)\right\}$
b. $\sum_{n=1}^{\infty} \frac{2^{n-1}}{5^{n}} \quad$ c. $\sum_{k=1}^{\infty} \frac{1+k}{2^{k} k}$
13. Suppose that the power series

$$
\sum_{n=0}^{\infty} c_{n} x^{n}
$$

converges if $x=-5$ and diverges if $x=7$. Investigate the convergence of each of the following series. Justify your answers.
a. $\sum_{n=0}^{\infty}(-1)^{n} c_{n} 4^{n}$
b. $\sum_{n=0}^{\infty} c_{n} 5^{n}$
c. $\sum_{n=0}^{\infty} c_{n}$
d. $\sum_{n=0}^{\infty}(-1)^{n} c_{n} 8^{n}$
14. Find the radius and interval of convergence of the power series

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n} 3^{2 n}}{4 n+1}(x-2)^{n}
$$

15. Find the Taylor series centred at 5 of the function f defined by

$$
f(x)=\frac{1}{2-x}
$$

Write the first five non-zero terms of the series explicitly, and give the interval of convergence of the series.

1. a. Let $\vartheta=\tan ^{-1}\left(\frac{3}{2 x}\right)$; so $\tan \vartheta=\frac{3}{2 x}$ and $-\frac{1}{2} \pi<\vartheta<\frac{1}{2} \pi$. Since

$$
\cos ^{2} \vartheta=\frac{1}{\sec ^{2} \vartheta}=\frac{1}{1+\tan ^{2} \vartheta}=\frac{1}{1+\left(\frac{3}{2 x}\right)^{2}}=\frac{(2 x)^{2}}{4 x^{2}+9}
$$

and since $\cos \vartheta>0$ if $-\frac{1}{2} \pi<\vartheta<\frac{1}{2} \pi$, it follows that

$$
\cos \left(\tan ^{-1}\left(\frac{3}{2 x}\right)\right)=\frac{2|x|}{\sqrt{4 x^{2}+9}}
$$

provided $x \neq 0$. (The function has a removable discontinuity at the origin.) b. Since

$$
\frac{d}{d x}\left\{\sqrt{4 x^{2}+9}\right\}=\frac{4 x}{\sqrt{4 x^{2}+9}},
$$

it follows that

$$
\int \cos \left(\tan ^{-1}\left(\frac{3}{2 x}\right)\right) d x=\frac{|x|}{2 x} \sqrt{4 x^{2}+9}+C
$$

on any interval which does not contain zero (and approaches $C \pm \frac{3}{2}$ as $x \rightarrow 0^{ \pm}$).
2. a. The resolution into partial fractions of the integrand has the form

$$
\frac{11 x^{2}-14 x+8}{(2 x-1)\left(x^{2}+1\right)}=\frac{A}{2 x-1}+\frac{B x+C}{x^{2}+1}
$$

and $A=3$ is obtained by covering. Clearing denominators gives

$$
11 x^{2}-14 x+8=A\left(x^{2}+1\right)+(B x+C)(2 x-1)
$$

and comparing the coefficients of x^{2} yields $A+2 B=11$, so $B=4$. Comparing the constant terms yields gives $A-C=8$, so $C=-5$. Therefore,

$$
\begin{aligned}
& \int \frac{11 x^{2}-14 x+8}{(2 x-1)\left(x^{2}+1\right)} d x=\int\left\{\frac{3}{2 x-1}+\frac{4 x-5}{x^{2}+1}\right\} d x \\
& \quad=\frac{3}{2} \log |2 x-1|+2 \log \left(x^{2}+1\right)-5 \arctan x+C .
\end{aligned}
$$

b. If $t=\arccos (2 x)$, then

$$
\int_{0}^{\frac{1}{4}} \frac{\arccos (2 x)}{\sqrt{1-4 x^{2}}} d x=\frac{1}{2} \int_{\frac{1}{3} \pi}^{\frac{1}{2} \pi} t d t=\left.\frac{1}{4} t^{2}\right|_{\frac{1}{3} \pi} ^{\frac{1}{2} \pi}=\frac{1}{4} \pi^{2}\left(\frac{1}{4}-\frac{1}{9}\right)=\frac{5}{144} \pi^{2} .
$$

c. If $t=x^{2}$, then repeated partial integration gives

$$
\begin{aligned}
\int x^{5} \cos \left(x^{2}\right) d x & =\frac{1}{2} \int t^{2} \cos t d t \\
& =\frac{1}{2}\left(t^{2} \sin t-2 t(-\cos t)+2(-\sin t)\right)+C \\
& =\frac{1}{2}\left(x^{4}-2\right) \sin \left(x^{2}\right)+x^{2} \cos \left(x^{2}\right)+C .
\end{aligned}
$$

d. If $t=\cos (5 x)$ then

$$
\begin{aligned}
\int \frac{\sin ^{3}(5 x)}{\cos (5 x)} d x & =\frac{1}{5} \int \frac{t^{2}-1}{t} d t=\frac{1}{10} t^{2}-\frac{1}{5} \log |t|+C \\
& =\frac{1}{10} \cos ^{2}(5 x)-\frac{1}{5} \log |\cos (5 x)|+C .
\end{aligned}
$$

e. If $0<x \leqslant 1$ and $t=x^{-1} \sqrt{1-x^{2}}=\sqrt{x^{-2}-1}$, then $-t d t=x^{-3} d x$, so

$$
\begin{aligned}
\int \frac{\sqrt{1-x^{2}}}{x^{4}} d x & =\int \sqrt{x^{-2}-1} \cdot \frac{d x}{x^{3}}=-\int t^{2} d t=-\frac{1}{3} t^{3}+C \\
& =-\frac{\left(1-x^{2}\right)^{3 / 2}}{3 x^{3}}+C
\end{aligned}
$$

If $-1 \leqslant x<0$ the same result follows by symmetry (since the derivative of an odd function is even).
3. a. Since $x^{2}-10 x+29=(x-5)^{2}+4$, integrating by inspection gives

$$
\int_{5}^{\infty} \frac{d x}{x^{2}-10 x+29}=\left.\lim _{\alpha \rightarrow \infty} \frac{1}{2} \arctan \left(\frac{1}{2}(x-5)\right)\right|_{5} ^{\alpha}=\frac{1}{4} \pi
$$

b. Since the antiderivative $2 \sqrt{\tan x}$ of the integrand is continuous on $\left[0, \frac{1}{4} \pi\right]$, it follows that

$$
\int_{0}^{\frac{1}{4} \pi} \frac{\sec ^{2} x}{\sqrt{\tan x}} d x=2 \sqrt{\tan \frac{1}{4} \pi}-2 \sqrt{\tan 0}=2 .
$$

4. a. Revising the expression in the limit and then applying l'Hôpital's Rule once gives

$$
\lim _{x \rightarrow \frac{1}{6} \pi} \frac{\sin \left(x-\frac{1}{6} \pi\right)}{\cos (3 x)}=\lim _{x \rightarrow \frac{1}{6} \pi} \frac{\cos \left(x-\frac{1}{6} \pi\right)}{-3 \sin (3 x)}=-\frac{1}{3}
$$

b. The expression in the limit is equal to e^{y}, where

$$
y=\frac{2 \log \log x}{1-\log x}=\frac{-2 \log \log x}{x-e} \cdot \frac{x-e}{\log x-1} \rightarrow-\frac{2}{e} \cdot e=-2
$$

as $x \rightarrow e$, by the definition of the derivative of a function. Therefore, the limit in question is equal to e^{-2}.
c. Since

$$
\lim _{x \rightarrow 0} \frac{\arctan (\alpha x)}{x}=\alpha
$$

by the definition of the derivative of a function, the limit in question is equal to $\frac{2}{5}$.
5. The curves meet where $x+1=2 \sqrt{x+1}$, or $(\sqrt{x+1}-2) \sqrt{x+1}=0$, i.e., where x is -1 or 3 . If $-1<x<3$ then $(\sqrt{x+1}-2) \sqrt{x+1}<0$, so the area of the region enclosed by the curves is equal to

$$
\int_{-1}^{3}\left\{\sqrt{x+1}-\frac{1}{2}(x+1)\right\} d x=\left.\left\{\frac{2}{3}(x+1)^{3 / 2}-\frac{1}{4}(x+1)^{2}\right\}\right|_{-1} ^{3}=\frac{4}{3}
$$

6. The curves meet where $x^{2}=-x^{2}+3 x$, or $x(2 x-3)=0$, i.e., where $x=0$ or $x=\frac{3}{2}$. If $0<x<3, x(2 x-3)$ is negative, so the graph of $y=x^{2}$ is below the graph of $y=-x^{2}+3 x$; hence, $\mathscr{R}=\left\{(x, y): 0 \leqslant x \leqslant \frac{3}{2}\right.$ and $\left.0 \leqslant 3 x-2 x^{2}\right\}$. a. The solid obtained by revolving \mathscr{R} about the y-axis can be decomposed into concentric cylindrical shells of radius x and height $3 x-2 x^{2}$, for $0 \leqslant x \leqslant \frac{3}{2}$, so its volume is equal to

$$
2 \pi \int_{0}^{\frac{3}{2}} x\left(3 x-2 x^{2}\right) d x
$$

b. The solid obtained by revolving \mathscr{R} about the line defined by $y=-1$ can be decomposed into annuli of inner radius $1+x^{2}$ and outer radius $1+3 x-x^{2}$, for $0 \leqslant x \leqslant \frac{3}{2}$, so its volume is equal to

$$
\pi \int_{0}^{\frac{3}{2}}\left\{\left(1+3 x-x^{2}\right)^{2}-\left(1+x^{2}\right)^{2}\right\} d x
$$

7. If $y=2 \ln \left(\cos \frac{1}{2} x\right)$, then

$$
\frac{d y}{d x}=-\tan \frac{1}{2} x, \quad \text { and so } \quad \frac{d s}{d x}=\sqrt{1+\left(\frac{d y}{d x}\right)^{2}}=\sec \frac{1}{2} x
$$

at least if $0<x<\pi$ (among other possibilities). So the length of the curve in question is equal to

$$
\begin{aligned}
\int_{\frac{1}{3} \pi}^{\frac{1}{2} \pi} \sec \frac{1}{2} x d x & =\left.2 \log \left(\sec \frac{1}{2} x+\tan \frac{1}{2} x\right)\right|_{\frac{1}{3} \pi} ^{\frac{1}{2} \pi} \\
& =2 \log \frac{\sqrt{ } 2+1}{\frac{2}{3} \sqrt{ } 3+\frac{1}{3} \sqrt{ } 3}=2 \log \frac{1+\sqrt{ } 2}{\sqrt{ } 3} \\
& =\log \left(1+\frac{2}{3} \sqrt{ } 2\right)
\end{aligned}
$$

8. The equation $x^{2} y^{\prime}+2 x y=3 x$ is equivalent to

$$
\frac{d}{d x}\left(x^{2} y\right)=3 x, \quad \text { or } \quad x^{2} y=\frac{3}{2} x^{2}+C
$$

on any interval where x does not vanish. The requirement that $y=1$ if $x=1$ implies that $C=-\frac{1}{2}$, and so the solution of the equation is

$$
x^{2} y=\frac{3}{2} x^{2}-\frac{1}{2}, \quad \text { or } \quad y=\frac{3}{2}-\frac{1}{2} x^{-2},
$$

where $x>0$.
9. As $n \rightarrow \infty, 4 / 9^{n} \rightarrow 0$ and $\ln \left(n^{2}\right) \rightarrow \infty$, so $\arctan \left(\ln \left(n^{2}\right)\right) \rightarrow \frac{1}{2} \pi$. Therefore, the sequence in question converges to $\frac{3}{2} \pi$.
10. a. Since

$$
0<\frac{e^{n}}{1+e^{2 n}}<\frac{e^{n}}{e^{2 n}}=e^{-n}
$$

if $n \geqslant 0$, and since $\sum e^{-n}$ is a convergent geometric series ($|r|=e^{-1}<1$), the Comparison Test implies that the series

$$
\sum_{n=0}^{\infty} \frac{e^{n}}{1+e^{2 n}}
$$

is convergent.
b. Let $a_{k}=\left(1-k^{-2 / 3}\right)^{k}$; then

$$
0<a_{k}=e^{k \log \left(1-k^{-2 / 3}\right)}=e^{-k^{1 / 3}-k^{-1 / 3} / 2-k^{-1} / 3-\cdots}<e^{-k^{1 / 3}}
$$

if $k \geqslant 2$, using the Maclaurin expansion

$$
\log (1-x)=-\sum_{n=1}^{\infty} \frac{x^{k}}{k}
$$

(which is valid if $-1 \leqslant x<1$) with $x=k^{-2 / 3}$. If $t=k^{1 / 3}$, then

$$
\lim \frac{e^{-k^{1 / 3}}}{k^{-4 / 3}}=\lim _{t \rightarrow \infty} \frac{t^{4}}{e^{t}}=\lim _{t \rightarrow \infty} \frac{24}{e^{t}}=0
$$

by four applications of l'Hôpital's Rule, so the Limit Comparison Test implies that the series $\sum e^{-k^{1 / 3}}$ converges with the p-series $\sum k^{-4 / 3}\left(p=\frac{4}{3}>1\right)$. Hence, by the first displayed inequality, the Comparison Test implies that $\sum a_{k}$ converges with $\sum e^{-k^{1 / 3}}$.
c. If

$$
a_{j}=\left(\frac{2 j+1}{3 j+1}\right)^{j}, \quad \text { then } \quad \lim \left(a_{j}\right)^{1 / j}=\lim \frac{2+1 / j}{3+1 / j}=\frac{2}{3}
$$

which is smaller than 1 , so the Root Test implies that $\sum a_{j}$ is a convergent series. d. Since $\lim \left(1+7 / 4^{m}\right)=1$, the vanishing criterion implies that the series $\sum\left(1+7 / 4^{m}\right)$ is divergent.
11. a. If

$$
a_{n}=\frac{1}{\log (4 n)}
$$

then, since $0<\log (4 n) \leqslant 2 \log n<2 n / e<n$, if $n \geqslant 4$ (from Calculus I the largest value of $(\log x) / x$ is $(\log e) / e=1 / e)$, and since the harmonic series $\sum n^{-1}$ is divergent, the Comparison Test implies that $\sum a_{n}$ is divergent. However, $\{\log (4 n)\}_{n \geqslant 1}$ is positive, increasing and unbounded, so the Alternating Series Test implies that $\sum(-1)^{n} a_{n}$ is convergent. Hence, the series $\sum(-1)^{n} a_{n}$, i.e., $\sum\left\{\cos (\pi n) a_{n}\right\}$, is conditionally convergent.
b. If

$$
a_{k}=\frac{(-1)^{k} 5^{k} k^{2}}{(2 k)!}
$$

then
$\lim \left|\frac{a_{k+1}}{a_{k}}\right|=\lim \left\{\frac{5^{k+1}(k+1)^{2}}{(2 k+2)!} \cdot \frac{(2 k)!}{5^{k} k^{2}}\right\}=\frac{5}{2} \lim \frac{(1+1 / k)^{2}}{(k+1)(2 k+1)}=0$,
so the Ratio Test implies that $\sum a_{k}$ is absolutely convergent.
12. a. The series in question is apparently telescoping, and the general term of its sequence of partial sums is equal to

$$
\arccos \left(\frac{1}{2}\right)-\arccos \left(\frac{1}{n+3}\right)
$$

which converges to $\arccos \left(\frac{1}{2}\right)-\arccos (0)=\frac{1}{3} \pi-\frac{1}{2} \pi=-\frac{1}{6} \pi$.
b. The series in question is a geometric series with first term $\frac{1}{5}$ and ratio $\frac{2}{5}$, so it is convergent and its sum is equal to $\frac{1}{5} /\left(1-\frac{2}{5}\right)=\frac{1}{3}$.
c. Separating the terms of the series gives

$$
\sum_{k=1}^{\infty} \frac{1+k}{2^{k} k}=\sum_{k=1}^{\infty}\left(\frac{1}{2}\right)^{k}+\sum_{k=1}^{\infty} \frac{k}{2^{k} k}
$$

provided the terms on the right both converge. The first term on the right is a convergent geometric series whose sum is $\frac{1}{2} /\left(1-\frac{1}{2}\right)=1$. The second term is obtained from the Maclaurin expansion of $-\log (1-x)$ by letting $x=\frac{1}{2}$, so its sum is $-\log \left(1-\frac{1}{2}\right)=\log 2$ (the Maclaurin series is displayed in the solution to Question 10b). Therefore, the sum of the series in question is $\log (2 e)$.
13. Let $f(x)$ denote the power series in question, whose interval of convergence includes the interval $[-5,5)$, is included in the interval $[-7,7)$, and may be equal to either of these intervals.
a. The series in question is $f(-4)$, which converges since -4 belongs to $[-5,5)$.
b. The series in question is $f(5)$, which may converge or diverge, since 5 belongs to $[-7,7)$, but does not belong to $[-5,5)$.
c. The series in question is $f(1)$, which converges since 1 belongs to $[-5,5)$.
d. The series in question is $f(-8)$, which diverges because -8 does not belong to $[-7,7)$.
14. If u_{n} denotes the general term of the given power series, then (provided $x \neq 2$)

$$
\lim \left|\frac{u_{n+1}}{u_{n}}\right|=9|x-2| \lim \frac{n+1 / 4}{n+3 / 4}=9|x-2|
$$

so the Ratio Test implies that $\sum u_{n}$ converges if $9|x-2|<1$, i.e., $\frac{17}{9}<x<\frac{19}{9}$, and diverges if $x<\frac{17}{9}$ or $x>\frac{19}{9}$. If $x=\frac{17}{2}$ then u_{n} is equal to

$$
a_{n}=\frac{1}{4 n+1} \geqslant \frac{1}{5} n^{-1}
$$

provided $n \geqslant 1$, and $\sum n^{-1}$ is a divergent p-series, so $\sum u_{n}$ diverges if $x=\frac{17}{9}$. If $x=\frac{19}{9}$ then $\sum u_{n}$ is $\sum(-1)^{n} a_{n}$, which converges by the Alternating Series Test, since a_{n} is positive if $n \geqslant 1$, decreasing (since it is the reciprocal of an increasing function) and $\lim a_{n}=0$. So the interval of convergence of $\sum u_{n}$ $\left(\frac{17}{9}, \frac{19}{9}\right]$, and the radius of convergence of $\sum u_{n}$ is $\frac{1}{9}$.
15. Revising the expression defining f and then expanding the resulting geometric series gives

$$
\begin{aligned}
f(x) & =\frac{1}{2-x}=-\frac{1}{3} \cdot \frac{1}{1-(-(x-5) / 3)}=-\frac{1}{3} \sum_{k=0}^{\infty}(-(x-5) / 3)^{k} \\
& =\sum_{k=0}^{\infty}\left(-\frac{1}{3}\right)^{k+1}(x-5)^{k} \\
& =-\frac{1}{3}+\frac{1}{9}(x-5)-\frac{1}{27}(x-5)^{2}+\frac{1}{81}(x-5)^{3}-\frac{1}{243}(x-5)^{4}+\cdots
\end{aligned}
$$

provided $\left|\frac{1}{3}(x-5)\right|<1$, i.e., $2<x<8$ (which gives the interval of convergence of the series).

