
Sample examinations Calculus II (201-NYB-05) Autumn 2013

1. a. Find the exact value of cos
(
tan−1

(
3

2x

))
.

b. Use your answer to Part a to evaluate∫
cos

(
tan−1

(
3

2x

))
dx.

2. Evaluate each of the following integrals.

a.
∫

11x2 − 14x+ 8

(2x− 1)(x2 + 1)
dx b.

∫ 1
4

0

arccos(2x)
√
1− 4x2

dx

c.
∫
x5 cos(x2) dx d.

∫
sin3(5x)

cos(5x)
dx e.

∫ √
1− x2

x4
dx

3. Evaluate each of the following improper integrals.

a.
∫ ∞
5

dx

x2 − 10x+ 29
b.
∫ 1

4
π

0

sec2 x
√
tanx

dx

4. Evaluate each of the following limits.

a. lim
x→ 1

6
π

{
sec(3x) sin

(
x− 1

6
π
)}

b. lim
x→e−

(lnx)
2

1−ln x c. lim
x→0

arctan(2x)

arctan(5x)

5. Find the area of the region enclosed by the graphs of

y =
√
x+ 1 and y = 1

2
(x+ 1).

6. Let R be the region bounded by the graphs of y = −x2 + 3x and y = x2.
Set up, but do not evaluate, an integral which represents the volume of the solid
obtained by rotating the region R about
a. the y-axis, b. the line defined by y = −1.

7. Find the length of the curve defined by

y = 2 ln
(
cos 1

2
x
)
, 1

3
π 6 x 6 1

2
π.

8. Solve the differential equation

x2y′ + 2xy = 3x,

given y(1) = 1 and x > 0.

9. Find the limit of the sequence whose general term is

an =
4

9n
+ 3arctan

(
ln(n2)

)
,

or else explain why the sequence diverges.

10. Determine whether each series is convergent. Justify all assertions carefully.

a.
∞∑
n=0

en

1 + e2n
b.
∞∑
k=1

(
1−

1
3
√
k2

)k

c.
∞∑
j=0

(
2j + 1

3j + 1

)j
d.
∞∑
m=0

(
1 +

7

4m

)
11. For each of the series below, determine whether it is absolutely convergent,
conditionally convergent or divergent. Justify all assertions carefully.

a.
∞∑
n=1

cos(πn)

ln(4n)
b.
∞∑
k=0

(−1)k5kk2

(2k)!

12. Find the sum of each series, or explain why the series diverges.

a.
∞∑
i=1

{
arccos

(
1

i+ 1

)
− arccos

(
1

i+ 2

)}
b.
∞∑
n=1

2n−1

5n
c.
∞∑
k=1

1 + k

2kk

13. Suppose that the power series
∞∑
n=0

cnx
n

converges if x = −5 and diverges if x = 7. Investigate the convergence of each
of the following series. Justify your answers.

a.
∞∑
n=0

(−1)ncn4n b.
∞∑
n=0

cn5
n c.

∞∑
n=0

cn d.
∞∑
n=0

(−1)ncn8n

14. Find the radius and interval of convergence of the power series
∞∑
n=1

(−1)n32n

4n+ 1
(x− 2)n.

15. Find the Taylor series centred at 5 of the function f defined by

f(x) =
1

2− x
.

Write the first five non-zero terms of the series explicitly, and give the interval of
convergence of the series.
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1. a. Let ϑ = tan−1

(
3

2x

)
; so tanϑ =

3

2x
and − 1

2
π < ϑ < 1

2
π. Since

cos2 ϑ =
1

sec2 ϑ
=

1

1 + tan2 ϑ
=

1

1 +

(
3

2x

)2
=

(2x)2

4x2 + 9
,

and since cosϑ > 0 if − 1
2
π < ϑ < 1

2
π, it follows that

cos

(
tan−1

(
3

2x

))
=

2|x|
√
4x2 + 9

,

provided x 6= 0. (The function has a removable discontinuity at the origin.)
b. Since

d

dx

{√
4x2 + 9

}
=

4x
√
4x2 + 9

,

it follows that ∫
cos

(
tan−1

(
3

2x

))
dx =

|x|
2x

√
4x2 + 9 + C,

on any interval which does not contain zero (and approaches C ± 3
2

as x→ 0±).

2. a. The resolution into partial fractions of the integrand has the form

11x2 − 14x+ 8

(2x− 1)(x2 + 1)
=

A

2x− 1
+
Bx+ C

x2 + 1
,

and A = 3 is obtained by covering. Clearing denominators gives

11x2 − 14x+ 8 = A(x2 + 1) + (Bx+ C)(2x− 1),

and comparing the coefficients of x2 yields A+ 2B = 11, so B = 4. Comparing
the constant terms yields gives A− C = 8, so C = −5. Therefore,∫

11x2 − 14x+ 8

(2x− 1)(x2 + 1)
dx =

∫ {
3

2x− 1
+

4x− 5

x2 + 1

}
dx

= 3
2
log|2x− 1|+ 2 log(x2 + 1)− 5 arctanx+ C.

b. If t = arccos(2x), then∫ 1
4

0

arccos(2x)
√
1− 4x2

dx = 1
2

∫ 1
2
π

1
3
π
t dt = 1

4
t2
∣∣∣∣ 12π
1
3
π

= 1
4
π2
(
1
4
− 1

9

)
= 5

144
π2.

c. If t = x2, then repeated partial integration gives∫
x5 cos(x2) dx = 1

2

∫
t2 cos t dt

= 1
2

(
t2 sin t− 2t(− cos t) + 2(− sin t)

)
+ C

= 1
2
(x4 − 2) sin(x2) + x2 cos(x2) + C.

d. If t = cos(5x) then∫
sin3(5x)

cos(5x)
dx = 1

5

∫
t2 − 1

t
dt = 1

10
t2 − 1

5
log|t|+ C

= 1
10

cos2(5x)− 1
5
log|cos(5x)|+ C.

e. If 0 < x 6 1 and t = x−1
√
1− x2 =

√
x−2 − 1, then −t dt = x−3 dx, so∫ √

1− x2

x4
dx =

∫ √
x−2 − 1 ·

dx

x3
= −

∫
t2 dt = − 1

3
t3 + C

= −
(1− x2)3/2

3x3
+ C.

If −1 6 x < 0 the same result follows by symmetry (since the derivative of an
odd function is even).

3. a. Since x2 − 10x+ 29 = (x− 5)2 + 4, integrating by inspection gives∫ ∞
5

dx

x2 − 10x+ 29
= lim
α→∞

1
2
arctan

(
1
2
(x− 5)

) ∣∣∣∣α
5

= 1
4
π.

b. Since the antiderivative 2
√
tanx of the integrand is continuous on

[
0, 1

4
π
]
, it

follows that ∫ 1
4
π

0

sec2 x
√
tanx

dx = 2
√

tan 1
4
π − 2

√
tan 0 = 2.

4. a. Revising the expression in the limit and then applying l’Hôpital’s Rule once
gives

lim
x→ 1

6
π

sin
(
x− 1

6
π
)

cos(3x)
= lim
x→ 1

6
π

cos
(
x− 1

6
π
)

−3 sin(3x)
= − 1

3
.

b. The expression in the limit is equal to ey , where

y =
2 log log x

1− log x
=
−2 log log x

x− e
·

x− e
log x− 1

→ −
2

e
· e = −2

as x → e, by the definition of the derivative of a function. Therefore, the limit in
question is equal to e−2.
c. Since

lim
x→0

arctan(αx)

x
= α,

by the definition of the derivative of a function, the limit in question is equal to 2
5

.

5. The curves meet where x+1 = 2
√
x+ 1, or (

√
x+ 1− 2)

√
x+ 1 = 0, i.e.,

where x is −1 or 3. If −1 < x < 3 then (
√
x+ 1− 2)

√
x+ 1 < 0, so the area

of the region enclosed by the curves is equal to∫ 3

−1

{√
x+ 1− 1

2
(x+ 1)

}
dx =

{
2
3
(x+ 1)3/2 − 1

4
(x+ 1)2

} ∣∣∣∣3
−1

= 4
3

.

6. The curves meet where x2 = −x2+3x, or x(2x−3) = 0, i.e., where x = 0 or
x = 3

2
. If 0 < x < 3, x(2x− 3) is negative, so the graph of y = x2 is below the

graph of y = −x2 + 3x; hence, R = { (x, y) : 0 6 x 6 3
2

and 0 6 3x− 2x2 }.
a. The solid obtained by revolving R about the y-axis can be decomposed into
concentric cylindrical shells of radius x and height 3x − 2x2, for 0 6 x 6 3

2
, so

its volume is equal to

2π

∫ 3
2

0
x(3x− 2x2) dx.

b. The solid obtained by revolving R about the line defined by y = −1 can be
decomposed into annuli of inner radius 1 + x2 and outer radius 1 + 3x− x2, for
0 6 x 6 3

2
, so its volume is equal to

π

∫ 3
2

0

{
(1 + 3x− x2)2 − (1 + x2)2

}
dx.

7. If y = 2 ln(cos 1
2
x), then

dy

dx
= − tan 1

2
x, and so

ds

dx
=

√
1 +

(
dy

dx

)2

= sec 1
2
x,

at least if 0 < x < π (among other possibilities). So the length of the curve in
question is equal to∫ 1

2
π

1
3
π

sec 1
2
x dx = 2 log

(
sec 1

2
x+ tan 1

2
x
) ∣∣∣∣ 12π

1
3
π

= 2 log

√
2 + 1

2
3

√
3 + 1

3

√
3
= 2 log

1 +
√
2

√
3

= log
(
1 + 2

3

√
2
)
.

8. The equation x2y′ + 2xy = 3x is equivalent to
d

dx

(
x2y
)
= 3x, or x2y = 3

2
x2 + C,

on any interval where x does not vanish. The requirement that y = 1 if x = 1

implies that C = − 1
2

, and so the solution of the equation is

x2y = 3
2
x2 − 1

2
, or y = 3

2
− 1

2
x−2,

where x > 0.

9. As n → ∞, 4/9n → 0 and ln(n2) → ∞, so arctan
(
ln(n2)

)
→ 1

2
π.

Therefore, the sequence in question converges to 3
2
π.

10. a. Since

0 <
en

1 + e2n
<

en

e2n
= e−n,

if n > 0, and since
∑
e−n is a convergent geometric series (|r| = e−1 < 1), the

Comparison Test implies that the series
∞∑
n=0

en

1 + e2n

2
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is convergent.

b. Let ak =
(
1− k−2/3

)k; then

0 < ak = ek log(1−k−2/3) = e−k
1/3−k−1/3/2−k−1/3−··· < e−k

1/3

if k > 2, using the Maclaurin expansion

log(1− x) = −
∞∑
n=1

xk

k

(which is valid if −1 6 x < 1) with x = k−2/3. If t = k1/3, then

lim
e−k

1/3

k−4/3
= lim
t→∞

t4

et
= lim
t→∞

24

et
= 0,

by four applications of l’Hôpital’s Rule, so the Limit Comparison Test implies that
the series

∑
e−k

1/3
converges with the p-series

∑
k−4/3 (p = 4

3
> 1). Hence,

by the first displayed inequality, the Comparison Test implies that
∑
ak converges

with
∑
e−k

1/3
.

c. If

aj =

(
2j + 1

3j + 1

)j
, then lim(aj)

1/j = lim
2 + 1/j

3 + 1/j
= 2

3
,

which is smaller than 1, so the Root Test implies that
∑
aj is a convergent series.

d. Since lim
(
1 + 7/4m

)
= 1, the vanishing criterion implies that the series∑(

1 + 7/4m
)

is divergent.

11. a. If
an =

1

log(4n)
,

then, since 0 < log(4n) 6 2 logn < 2n/e < n, if n > 4 (from Calcu-
lus I the largest value of (log x)/x is (log e)/e = 1/e), and since the harmonic
series

∑
n−1 is divergent, the Comparison Test implies that

∑
an is divergent.

However, {log(4n)}n>1 is positive, increasing and unbounded, so the Alternating
Series Test implies that

∑
(−1)nan is convergent. Hence, the series

∑
(−1)nan,

i.e.,
∑{

cos(πn)an
}

, is conditionally convergent.
b. If

ak =
(−1)k5kk2

(2k)!
,

then

lim

∣∣∣∣ak+1

ak

∣∣∣∣ = lim

{
5k+1(k + 1)2

(2k + 2)!
·
(2k)!

5kk2

}
= 5

2
lim

(1 + 1/k)2

(k + 1)(2k + 1)
= 0,

so the Ratio Test implies that
∑
ak is absolutely convergent.

12. a. The series in question is apparently telescoping, and the general term of its
sequence of partial sums is equal to

arccos
(
1
2

)
− arccos

(
1

n+ 3

)
,

which converges to arccos
(
1
2

)
− arccos(0) = 1

3
π − 1

2
π = − 1

6
π.

b. The series in question is a geometric series with first term 1
5

and ratio 2
5

, so it is
convergent and its sum is equal to 1

5
/
(
1− 2

5

)
= 1

3
.

c. Separating the terms of the series gives
∞∑
k=1

1 + k

2kk
=

∞∑
k=1

(
1
2

)k
+

∞∑
k=1

k

2kk
,

provided the terms on the right both converge. The first term on the right is a
convergent geometric series whose sum is 1

2
/
(
1 − 1

2

)
= 1. The second term is

obtained from the Maclaurin expansion of − log(1 − x) by letting x = 1
2

, so its
sum is − log

(
1− 1

2

)
= log 2 (the Maclaurin series is displayed in the solution to

Question 10b). Therefore, the sum of the series in question is log(2e).

13. Let f(x) denote the power series in question, whose interval of convergence
includes the interval [−5, 5 ), is included in the interval [−7, 7 ), and may be equal
to either of these intervals.
a. The series in question is f(−4), which converges since−4 belongs to [−5, 5 ).
b. The series in question is f(5), which may converge or diverge, since 5 belongs
to [−7, 7 ), but does not belong to [−5, 5 ).
c. The series in question is f(1), which converges since 1 belongs to [−5, 5 ).
d. The series in question is f(−8), which diverges because−8 does not belong to
[−7, 7 ).

14. If un denotes the general term of the given power series, then (provided x 6= 2)

lim

∣∣∣∣un+1

un

∣∣∣∣ = 9|x− 2| lim
n+ 1/4

n+ 3/4
= 9|x− 2|,

so the Ratio Test implies that
∑
un converges if 9|x−2| < 1, i.e., 17

9
< x < 19

9
,

and diverges if x < 17
9

or x > 19
9

. If x = 17
2

then un is equal to

an =
1

4n+ 1
> 1

5
n−1,

provided n > 1, and
∑
n−1 is a divergent p-series, so

∑
un diverges if x = 17

9
.

If x = 19
9

then
∑
un is

∑
(−1)nan, which converges by the Alternating Se-

ries Test, since an is positive if n > 1, decreasing (since it is the reciprocal of
an increasing function) and lim an = 0. So the interval of convergence of

∑
un(

17
9
, 19

9

]
, and the radius of convergence of

∑
un is 1

9
.

15. Revising the expression defining f and then expanding the resulting geometric
series gives

f(x) =
1

2− x
= −

1

3
·

1

1−
(
−(x− 5)/3

) = − 1
3

∞∑
k=0

(
−(x− 5)/3

)k
=
∞∑
k=0

(
− 1

3

)k+1
(x− 5)k

= − 1
3
+ 1

9
(x− 5)− 1

27
(x− 5)2 + 1

81
(x− 5)3 − 1

243
(x− 5)4 + · · ·

provided
∣∣ 1
3
(x−5)

∣∣ < 1, i.e., 2 < x < 8 (which gives the interval of convergence
of the series).

3


