1. Evaluate the following integrals.
a. $\int \frac{\tan ^{5}(\log x) \sec ^{3}(\log x)}{x} d x \quad$ b. $\int x \arcsin x d x \quad$ c. $\int \frac{x^{2}}{\sqrt{4 x^{2}-9}} d x$
d. $\int \frac{8 x^{2}+4 x+5}{(x+1)^{2}(2 x-1)} d x \quad$ e. $\int_{5}^{6} \frac{d x}{\sqrt{-x^{2}+10 x-21}}$ f. $\int \frac{e^{x}}{\sqrt{e^{2 x}+25}} d x$
g. $\int \sqrt{ } x e^{\sqrt{ } x} d x$
h. $\int_{1}^{\sqrt{3}} \frac{d x}{x^{2} \arctan x+\arctan x}$
2. Given $f(-2)=-3, f^{\prime}(-2)=5, f(1)=3$ and $f^{\prime}(1)=2$, evaluate

$$
\int_{-2}^{1} x f^{\prime \prime}(x) d x
$$

3. Evaluate the following limits.
a. $\lim _{x \rightarrow \pi} \frac{\sin ^{2}(3 x)}{1+\cos x}$
b. $\lim _{x \rightarrow \infty}\left\{x\left(e^{3 / x}-1\right)\right\}$
c. $\lim _{x \rightarrow 0^{+}}(\cos x)^{1 / x^{2}}$
4. Determine whether each improper integral is convergent. If an integral converges, evaluate it.
a. $\int_{1}^{\infty} \frac{1-\log x}{x^{2}} d x$
b. $\int_{0}^{3} \frac{d x}{x^{2}-2 x+1}$
5. Solve the differential equation

$$
\cos ^{2}(x) \frac{d y}{d x}=e^{-y} \sin (x) ; \quad y(0)=0
$$

6. Sketch the region enclosed by the graphs of

$$
y=x^{2}+1 \quad \text { and } \quad y=2 x+4
$$

and find its area.
7. Let \mathscr{R} be the region bounded by the graphs of

$$
y=1+\cos x, \quad y=1, \quad x=0 \quad \text { and } \quad x=\frac{1}{2} \pi .
$$

Set up, but do not evaluate, an integral which is equal to the volume of the solid obtained by revolving \mathscr{R} about: a. the y-axis; b. the x-axis; c. the line defined by $x=3$; d. the line defined by $y=3$;
8. Let $a_{n}=n \sin (1 / n)$, for $n \geqslant 1$.
a. Is $\left\{a_{n}\right\}$ convergent? If so, find its limit. If not, explain why not.
b. Is $\sum_{n=1}^{\infty} a_{n}$ convergent? Justify your answer.
9. You are given that $a_{1}+a_{2}+\cdots+a_{n}=\frac{n}{n+2}$, for $n \geqslant 1$.
a. Evaluate $\sum_{n=1}^{\infty} a_{n}$.
b. Find a_{n}, for $n \geqslant 1$.
10. Determine whether each series is convergent or divergent.
a. $\sum_{n=1}^{\infty}\left\{\frac{2 n}{3 n+2}-\frac{1}{n \sqrt{ } n}\right\}$
b. $\sum_{n=1}^{\infty} \frac{1}{n 7^{n}}$
c. $\sum_{n=1}^{\infty}\left(\frac{-n}{2 n+1}\right)^{3 n}$
d. $\sum_{n=1}^{\infty} \frac{5 \sqrt{ } n}{(n+1)^{2}}$
11. Determine whether each series is absolutely convergent, conditionally convergent or divergent.
a. $\sum_{n=1}^{\infty} \frac{\cos (\pi n)}{\ln (2 n)}$
b. $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{(2 n+1)!}{n^{2} 7^{n}}$
12. Find the radius and interval of convergence of the power series

$$
\sum_{k=1}^{\infty}(-1)^{k+1} \frac{3^{2 k}}{3 k+1}(x-1)^{k}
$$

13. Find the Maclaurin series of $f(x)=\frac{x}{x+1}$.

Solutions

1. a. If $s=\sec (\log x)$, then $\frac{d s}{d x}=x^{-1} \sec (\log x) \tan (\log x)$, and

$$
\tan ^{4}(\log x) \sec ^{2}(\log x)=\left(s^{2}-1\right)^{2} s^{2}=s^{6}-2 s^{4}+s^{2}
$$

So the integral in question is equal to

$$
\int\left(s^{6}-2 s^{4}+s^{2}\right) d s=\frac{1}{7} \sec ^{7}(\log x)-\frac{2}{5} \sec ^{5}(\log x)+\frac{1}{3} \sec ^{3}(\log x)+a
$$

b. If $\vartheta=\arcsin x$, then $x \frac{d x}{d \vartheta}=\sin \vartheta \cos \vartheta=\frac{1}{2} \sin (2 \vartheta)$, and partial integration gives

$$
\int x \arcsin x d x=\frac{1}{2} \int \vartheta \sin (2 \vartheta) d \vartheta=-\frac{1}{4} \vartheta \cos (2 \vartheta)+\frac{1}{8} \sin (2 \vartheta)+b
$$

Since $\sin (2 \vartheta)=2 \sin \vartheta \cos \vartheta=2 x \sqrt{1-x^{2}}$ and $\cos (2 \vartheta)=1-2 \sin ^{2}(\vartheta)=1-2 x^{2}$, it follows that

$$
\int x \arcsin x d x=\frac{1}{4} x \sqrt{1-x^{2}}+\frac{1}{4}\left(2 x^{2}-1\right) \arcsin x+b
$$

c. Partial integration and revising the remaining integral gives

$$
\begin{aligned}
\int x \cdot \frac{x}{\sqrt{4 x^{2}-9}} d x & =\frac{1}{4} x \sqrt{4 x^{2}-9}-\frac{1}{4} \int \sqrt{4 x^{2}-9} d x \\
& =\frac{1}{4} x \sqrt{4 x^{2}-9}-\int \frac{x^{2}}{\sqrt{4 x^{2}-9}} d x+\frac{9}{4} \int \frac{d x}{\sqrt{4 x^{2}-9}}
\end{aligned}
$$

Solving for the integral in question then gives

$$
\int \frac{x^{2}}{\sqrt{4 x^{2}-9}} d x=\frac{1}{8} x \sqrt{4 x^{2}-9}+\frac{9}{16} \log \left|2 x+\sqrt{4 x^{2}-9}\right|+c
$$

d. The resolution into partial fractions of the integrand is

$$
\frac{a}{x+1}-\frac{3}{(x+1)^{2}}+\frac{4}{2 x-1}=\frac{8 x^{2}+4 x+5}{(x+1)^{2}(2 x-1)}
$$

where the second and third coefficients are obtained by multiplying and evaluating. Comparing the quadratic coefficients then gives $a=2$. Therefore,

$$
\begin{aligned}
\int \frac{8 x^{2}+4 x+5}{(x+1)^{2}(2 x-1)} d x & =\int\left(\frac{2}{x+1}-\frac{3}{(x+1)^{2}}+\frac{4}{2 x-1}\right) d x \\
& =2 \log |(x+1)(2 x-1)|+\frac{3}{x+1}+d .
\end{aligned}
$$

e. Since $-x^{2}+10 x-21=4-(x-5)^{2}$, the integral in question is equal to

$$
\int_{5}^{6} \frac{d x}{\sqrt{4-(x-5)^{2}}}=\left.\arcsin \left(\frac{1}{2}(x-5)\right)\right|_{5} ^{6}=\frac{1}{6} \pi
$$

f. If $t=e^{x}$, then $d t=e^{x} d x$, and hence

$$
\int \frac{e^{x}}{\sqrt{e^{2 x}+25}} d x=\int \frac{d t}{\sqrt{t^{2}+25}}=\log \left(e^{x}+\sqrt{e^{2 x}+25}\right)+f
$$

g. If $t=\sqrt{ } x$ then $d x=2 t d t$, and repeated partial integration gives

$$
\int \sqrt{ } x e^{\sqrt{ } x} d x=2 \int t^{2} e^{t} d t=2 e^{t}\left(t^{2}-2 t+2\right)+g=2 e^{\sqrt{ } x}(x-2 \sqrt{ } x+2)+g
$$

h. Since $x^{2} \arctan x+\arctan x=\left(x^{2}+1\right) \arctan x$, it the integral in question is equal to

$$
\begin{aligned}
\int_{1}^{\sqrt{3}} \frac{1}{\arctan x} \cdot \frac{d x}{x^{2}+1} & =\left.\log (\arctan x)\right|_{1} ^{\sqrt{3}}=\log \left(\frac{1}{3} \pi\right)-\log \left(\frac{1}{4} \pi\right) \\
& =\log \left(\frac{4}{3}\right)
\end{aligned}
$$

2. As $f(-2)=-3, f^{\prime}(-2)=5, f(1)=3$ and $f^{\prime}(1)=2$, partial integration gives

$$
\int_{-2}^{1} x f^{\prime \prime}(x) d x=\left.x f^{\prime}(x)\right|_{-2} ^{1}-\int_{-2}^{1} f^{\prime}(x) d x=(1)(2)-(-2)(5)-(3-(-3))=6
$$

3. a. If $t=\pi-x$, then

$$
1+\cos x=1-\cos t=2 \sin ^{2}\left(\frac{1}{2} t\right) \quad \text { and } \quad \sin ^{2}(3 x)=\sin ^{2}(3 t)
$$

Hence,

$$
\lim _{x \rightarrow \pi} \frac{\sin ^{2}(3 x)}{1+\cos x}=18 \lim _{t \rightarrow 0}\left\{\frac{\sin ^{2}(3 t)}{(3 t)^{2}} \cdot \frac{\left(\frac{1}{2} t\right)^{2}}{\sin ^{2}\left(\frac{1}{2} t\right)}\right\}=18 .
$$

Alternatively, using Maclaurin expansions of the sine and cosine functions,

$$
\frac{\sin ^{2}(3 x)}{1+\cos x}=\frac{\sin ^{2}(3 t)}{1-\cos t}=\frac{\left(3 t-\frac{1}{6}(3 t)^{3}+\cdots\right)^{2}}{\frac{1}{2} t^{2}-\frac{1}{24} t^{4}-\cdots} \rightarrow 18, \quad \text { as } x \rightarrow \pi(\text { i.e., } t \rightarrow 0) .
$$

b. Letting $t=3 / x$ and using the definition of the derivative yields

$$
\lim _{x \rightarrow \infty}\left\{x\left(e^{3 / x}-1\right)\right\}=3 \lim _{t \rightarrow 0^{+}} \frac{e^{t}-1}{t}=3 .
$$

c. If $t=-2 \sin ^{2}\left(\frac{1}{2} x\right)$, then

$$
\lim _{t \rightarrow 0^{-}} \frac{t}{x^{2}}=-\frac{1}{2} \lim _{x \rightarrow 0}\left(\frac{\sin \left(\frac{1}{2} x\right)}{\frac{1}{2} x}\right)^{2}=-\frac{1}{2}
$$

Since $\cos x=1-2 \sin ^{2}\left(\frac{1}{2} x\right)=1+t$, it follows that

$$
\lim _{x \rightarrow 0^{+}}(\cos x)^{1 / x^{2}}=\lim _{t \rightarrow 0^{-}}\left((1+t)^{1 / t}\right)^{t / x^{2}}=\sqrt{ } e^{-1}
$$

4. a. Partial integration, integrating the power, gives

$$
\int_{1}^{\infty} \frac{1-\log x}{x^{2}} d x=\lim _{t \rightarrow \infty}-\left.\frac{1-\log x}{x}\right|_{1} ^{t}-\int_{1}^{\infty} \frac{d x}{x^{2}}=1+\left.\lim _{t \rightarrow \infty} \frac{1}{x}\right|_{1} ^{t}=0
$$

b. If $t=1-x$ then

$$
\int_{0}^{1} \frac{d x}{x^{2}-2 x+1}=\int_{0}^{1} \frac{d x}{(x-1)^{2}}=\int_{0}^{1} \frac{d t}{t^{2}}
$$

is divergent ($p=2 \geqslant 1$ in the scale of powers at the origin). Therefore, the integral in question is divergent.
5. Separating variables gives

$$
e^{y} \frac{d y}{d x}=\frac{\sin (x)}{\cos ^{2}(x)}, \quad \text { and hence } \quad e^{y}=\frac{1}{\cos (x)}, \quad \text { or } \quad y=-\log (\cos x)
$$

since $y=0$ if $x=0$ (which solution is valid if $-\frac{1}{2} \pi<x<\frac{1}{2} \pi$).
6. Follows a sketch of the region (not to scale—the x-axis is dilated by a factor of 2).

The curves meet where

$$
x^{2}+1=2 x+4
$$

i.e.,

$$
x^{2}-2 x-3=0
$$

or

$$
(x+1)(x-3)=0
$$

$$
y=2 x+4
$$

Since the line is above the parabola if $-1<x<3$, the area of the region is

$$
\int_{-1}^{3}\left(3+2 x-x^{2}\right) d x=\left.\left(3 x+x^{2}-\frac{1}{3} x^{3}\right)\right|_{-1} ^{3}=12+8-\frac{28}{3}=\frac{32}{3}
$$

7. The region \mathscr{R} is sketched below.

a. The solid obtained by revolving \mathscr{R} about the y-axis can be decomposed into concentric cylinders of radius x and height $\cos x$, for $0 \leqslant x \leqslant \frac{1}{2} \pi$, so its volume is equal to

$$
2 \pi \int_{0}^{\frac{1}{2} \pi} x \cos (x) d x
$$

b. The solid obtained by revolving \mathscr{R} about the x-axis can be decomposed into annuli of inner radius 1 and outer radius $1+\cos (x)$, for $0 \leqslant x \leqslant \frac{1}{2} \pi$, so its volume is equal to

$$
\pi \int_{0}^{\frac{1}{2} \pi}\left\{(1+\cos (x))^{2}-1\right\} d x=\pi \int_{0}^{\frac{1}{2} \pi}\left\{\cos ^{2}(x)+2 \cos (x)\right\} d x
$$

c. The solid obtained by revolving \mathscr{R} about the line defined by $x=3$ consists of concentric cylindrical shells of radius $3-x$ and height $\cos x$, for $0 \leqslant x \leqslant \frac{1}{2} \pi$, so its volume is equal to

$$
2 \pi \int_{0}^{\frac{1}{2} \pi}(3-x) \cos (x) d x
$$

d. The solid obtained by revolving \mathscr{R} about the line defined by $y=3$ can be decomposed into annuli of inner radius $2-\cos (x)$ and outer radius 2 , for $0 \leqslant x \leqslant \frac{1}{2} \pi$, so its volume is equal to

$$
\pi \int_{0}^{\frac{1}{2} \pi}\left\{2^{2}-(2-\cos (x))^{2}\right\} d x=\pi \int_{0}^{\frac{1}{2} \pi}\left\{4 \cos (x)-\cos ^{2}(x)\right\} d x
$$

8. a. The sequence $\left\{a_{n}\right\}$ converges to 1 , since

$$
\lim a_{n}=\lim \{n \sin (1 / n)\}=\lim _{t \rightarrow 0} \frac{\sin t}{t}=1 .
$$

b. Since $\lim a_{n} \neq 0$, the series $\sum a_{n}$ is divergent by the vanishing condition.
9. a. By the orthodox definition of the sum of a series,

$$
\sum_{n=1}^{\infty} a_{n}=\lim _{n \rightarrow \infty}\left(a_{1}+\cdots+a_{n}\right)=\lim _{n \rightarrow \infty} \frac{n}{n+2}=\lim _{n \rightarrow \infty}\left\{1-\frac{2}{n+2}\right\}=1
$$

b. If $n \geqslant 2$, then

$$
a_{n}=\left(a_{1}+\cdots+a_{n}\right)-\left(a_{1}+\cdots+a_{n-1}\right)=-\frac{2}{n+2}+\frac{2}{n+1}=\frac{2}{(n+1)(n+2)} .
$$

In fact, the displayed expression also gives the correct value $a_{1}=\frac{1}{3}$.
10. a. Since

$$
\lim \left\{\frac{2 n}{3 n+2}-\frac{1}{n \sqrt{ } n}\right\}=\frac{2}{3} \neq 0, \quad \text { the series } \quad \sum_{n=1}^{\infty}\left\{\frac{2 n}{3 n+2}-\frac{1}{n \sqrt{ } n}\right\}
$$

is divergent by the vanishing condition.
b. If $n \geqslant 1$, then $0<\left(n 7^{n}\right)^{-1} \leqslant 7^{-n}$, and $\sum 7^{-n}$ is a convergent geometric series $\left(|r|=\frac{1}{7}<1\right)$, so the comparison test implies that the series $\sum\left(n 7^{n}\right)^{-1}$ is convergent. (The ratio test could be used as well.)
c. If

$$
a_{n}=\left(\frac{-n}{2 n+1}\right)^{3 n}, \quad \text { then } \quad \lim \sqrt[n]{\left|a_{n}\right|}=\lim \left(\frac{n}{2 n+1}\right)^{3}=\frac{1}{8}
$$

so the root test implies that the series $\sum a_{n}$ is (absolutely) convergent. d. If

$$
a_{n}=\frac{5 \sqrt{ } n}{(n+1)^{2}}, \quad \text { then } \quad 0<a_{n}<\frac{5 \sqrt{ } n}{n^{2}}=\frac{5}{n^{3 / 2}}, \quad \text { if } \quad n \geqslant 1
$$

Since $\sum n^{-3 / 2}$ is a convergent p-series, the comparison test implies that the series $\sum a_{n}$ is convergent. (The limit comparison test could be used as well.) 11. a. If $n \geqslant 1$, then $0 \leqslant \log n \leqslant n-1$; hence, $0<\log (2 n)=\log 2+\log n<n$. Therefore, if

$$
a_{n}=\frac{1}{\log (2 n)} \quad \text { and } \quad n \geqslant 1, \text { then } \quad 0<\frac{1}{n}<a_{n}
$$

so the comparison test implies that $\sum a_{n}$ diverges with the harmonic series. On the other hand, $\log (2(n+1))>\log (2 n)>0$ if $n \geqslant 1$, and $\lim \log (2 n)=\infty$, which implies that $0<a_{n+1}<a_{n}$ if $n \geqslant 1$, and $\lim a_{n}=0$. As $\cos (\pi n)=(-1)^{n}$, the series $\sum \cos (\pi n) a_{n}$ is convergent by the alternating series test. Thus, $\sum \cos (\pi n) a_{n}$ is a conditionally convergent series.
b. If $n \geqslant 5$, then

$$
a_{n}=\frac{(2 n+1)!}{n^{2} 7^{n}}=1 \cdot 2 \cdots(n-1) \cdot \frac{n(n+1)}{n^{2}} \cdot \frac{(n+2)(n+3) \cdots(2 n+1)}{7^{n}}>24
$$

so the vanishing condition implies that $\sum(-1)^{n+1} a_{n}$ is divergent. (The ratio test could be used as well.)
12. If

$$
\beta_{k}=(-1)^{k+1} \frac{3^{2 k}}{3 k+1}(x-1)^{k}
$$

and $x \neq 1$, then

$$
\begin{aligned}
\lim \left|\frac{\beta_{k+1}}{\beta_{k}}\right| & =\lim \left|\frac{3 k+4}{3^{2 k+2}(x-1)^{k+1}} \cdot \frac{3^{2 k}(x-1)^{k}}{3 k+1}\right| \\
& =9|x-1| \lim \frac{3+4 k^{-1}}{3+k^{-1}}=9|x-1|
\end{aligned}
$$

so the ratio test implies that $\sum \beta_{k}$ is absolutely convergent if $|x-1|<\frac{1}{9}$, i.e., $\frac{8}{9}<x<\frac{10}{9}$, and divergent if $x<\frac{8}{9}$ or $x>\frac{10}{9}$. Now,

$$
\beta_{k}=\frac{-1}{3 k+1}, \quad \text { if } x=\frac{8}{9}, \quad \text { and } \quad \beta_{k}=\frac{(-1)^{k+1}}{3 k+1}, \quad \text { if } x=\frac{10}{9}
$$

Let $b_{k}=(3 k+1)^{-1}$. Since $0<\frac{1}{4} k^{-1} \leqslant b_{k}$ if $k \geqslant 1$, the series $\sum b_{k}$ diverges with the harmonic series by the comparison test; hence, $\sum \beta_{k}$ diverges if $x=\frac{8}{9}$. On the other hand, $0<b_{k+1}<b_{k}$ if $k \geqslant 1$ and $\lim b_{k}=0$, so the alternating series test implies that $\sum \beta_{k}$ converges if $x=\frac{10}{9}$. Therefore, the power series $\sum \beta_{k}$ has radius of convergence $\frac{1}{9}$ and interval of convergence $\left(\frac{8}{9}, \frac{10}{9}\right]$.
13. Using a standard geometric series gives

$$
\frac{x}{x+1}=x \cdot \frac{1}{1-(-x)}=x \sum_{j=0}^{\infty}(-x)^{j}=\sum_{j=0}^{\infty}(-1)^{j} x^{j+1}=\sum_{j=1}^{\infty}(-1)^{j-1} x^{j}
$$

provided $-1<x<1$.

