
Sample examinations Calculus II (-nyb-) Winter 

Question . — Evaluate each of the following integrals.

a.

1
4π∫

0

tan4(ϑ) sec4(ϑ)dϑ b.
∫

(log(x))2 dx c.
∫

sec(x) tan(x)√
9− sec2(x)

dx

d.

2∫

1

√
3 + 2x − x2 dx e.

∫
x4 + 3x2 + 8
x4 + 4x2

dx

Question . — Evaluate each of the following limits.

a. lim
x→1

sin(log(x))− x+ 1
(x − 1)2

b. lim
x→−∞(1 + ex)e

−x

Question . — For each improper integral, either evaluate it or else ex-
plain why it is divergent.

a.

1
2π∫

0

cot(x)dx b.

∞∫

0

x
ex

dx

Question . — LetR be the region enclosed by the x axis, and the graphs
of y =

√
x and x = 2− y2.

a. SketchR and compute its area.
b. Find the volume of the solid obtained by rotatingR about x = 2.

Question . — Solve the initial value problem

1
y

dy

dx
− 2x

√
y2 − 1 = 0, y(0) = 2.

Express y explicitly as a function of x.

Question . — According to Newton’s law of cooling, the rate of change
of the temperature of an object is proportional to the difference between
its temperature and the ambient temperature. The temperature of a large
room is kept at 20◦C, and in that room a small object of temperature
100◦C cools to 60◦C after one minute.

a. Set up a differential equation for the temperature T of the object
after t minutes, and solve the initial value problem.

b. How long will it take the object to cool to 30◦C? Give a simplified
exact answer.

Question . — Find the length of the curve y = log(cos(x)), 0 6 x 6 1
4π.

Question . — For each series, either find its sum or else show that it is
divergent. Justify your answers.

a. 4− 3 +
9
4
− 27

16
+

81
64
− · · · b.

∞∑

n=2

(
e1/(n+1) − e1/(n−1)

)

Question . — Determine whether each series is convergent or divergent.
Justify your conclusions.

a.
∞∑

n=1

arctan(n)
1− e−n b.

∞∑

n=2

3− cos2(n)
n− 1

Question . — Determine whether each series is absolutely convergent,
conditionally convergent or divergent. Justify your conclusions.

a.
∞∑

n=1

(−1)n+1n2

3n(2n)!
b.
∞∑

n=1

(−2n)n
(
sin(1/n)

)n
c.
∞∑

n=0

(−1)nn
n2 + 4

Question . — If a series
∞∑

n=1

an converges conditionally and the limit

lim
n→∞

∣∣∣∣∣
an+1
an

∣∣∣∣∣ exists, what can you say about this limit? Justify your answer.

Question . — Find the radius and interval of convergence of the power
series ∞∑

n=1

(x − 2)n

n32n+1 .

Question . — Find the Taylor series of (1− 2x)−1 centred at −1.
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Solution to Question . — a. If t = tan(ϑ) then dt = sec2(ϑ)dϑ and
sec2(ϑ) = t2 + 1, so

1
4π∫

0

tan4(ϑ)sec4(ϑ)dϑ =

1∫

0

t4(t2 + 1)dt =

1∫

0

(t6 + t4)dt

=
(

1
7 t

7 + 1
5 t

5
)∣∣∣∣∣∣

1

0

= 1
7 + 1

5 = 12
35 .

b. Repeated partial integration gives
∫

(log(x)
︸︷︷︸
D

)2 · dx︸︷︷︸
∫

= x(log(x))2 − 2
∫

log(x)
︸︷︷︸
D

dx︸︷︷︸
∫

= x(log(x))2 − 2x log(x) +
∫

2dx = x(log(x))2 − 2x log(x) + 2x.

c. If s = sec(x) then ds = sec(x) tan(x)dx, so
∫

sec(x) tan(x)√
9− sec2(x)

dx
∫

ds√
9− s2

= arcsin
(

1
3 s

)
= arcsin

(
1
3 sec(x)

)
.

d. Since 3+2x−x2 = 4−(x−1)2 = 4−t2 with t = x−1, partial integration
with absorption gives

2∫

1

√
3 + 2x − x2 dx =

1∫

0

√
4− t2︸  ︷︷  ︸
D

· dt︸︷︷︸
∫

= t
√

4− t2
∣∣∣∣∣∣

1

0

+

1∫

0

t2 − 4 + 4√
4− t2

dt

=
√

3−
1∫

0

√
4− t2 dt

︸         ︷︷         ︸
(absorb on the left)

+ 4

1∫

0

dt√
4− t2

= 1
2
√

3 + 2arcsin
(

1
2 t

)∣∣∣∣∣∣

1

0

= 1
2
√

3 + 1
3π.

e. Division and resolution into partial fractions yields

x4 + 3x2 + 8
x4 + 4x2

= 1 +
−x2 + 8
x2(x2 + 4)

= 1 +
2
x2 −

3
x2 + 4

,

in which the coefficients are obtained by covering (taking x2 as a variable).
Thus, ∫

x4 + 3x2 + 8
x4 + 4x2

dx = x − 2
x
− 3

2 arctan
(

1
2x

)
.

Solution to Question . — a. Expanding sin(ϑ) about 0 and log(x) about
1 gives (via dominant terms)

lim
x→1

sin(log(x))− x+ 1
(x − 1)2

= lim
x→1

(
− 1

2 (x − 1)2 + 1
3 (x − 1)3 − · · ·

)
− 1

6

(
x − 1− 1

2 (x − 1)2 + · · ·
)3

+ · · ·
(x − 1)2

= − 1
2 .

Alternatively, two applications of l’Hôpital’s rule with revision yields

lim
x→1

sin(log(x))− x+ 1
(x − 1)2

= lim
x→1

cos(log(x))/x − 1
2(x − 1)

= lim
x→1

cos(log(x))− x
2(x2 − x)

= lim
x→1

−sin(log(x))/x − 1
2(2x − 1)

= − 1
2

b. The limit lim
t→0

(1 + t)1/t = e, with t = ex as x→−∞, gives

lim
x→−∞(1 + ex)e

−x
= e.

Solution to Question . — a. The integral diverges, since

1
2π∫

0

cot(x)dx = lim
x→0+

1
2π∫

x

cot(x)dx = lim
x→0+

(
− log |sin(x)|

)
=∞

b. Partial integration gives
∞∫

0

x
ex

dx = lim
x→∞

x∫

0

x︸︷︷︸
D

· e−x︸︷︷︸
∫

dx = lim
x→∞

(
−xe−x − e−x

)∣∣∣∣∣∣

x

0

= lim
x→∞

(
1− x+ 1

ex

)
= 1.

Solution to Question . — a. The curves meet where y > 0, x = y2 and
x = 2− y2; i.e., where x = y = 1. Below is a sketch, withR shaded in cyan.

x

y

y =
√
x (x = y2)x = 2− y2

R = { (x,y) : 0 6 y 6 1 and y2 6 x 6 2− y2 }

The area of the regionR is thus

1∫

0

(
2− y2 − y2

)
dy =

(
2y − 2

3 y
3
)∣∣∣∣∣∣

1

0

= 2− 2
3 = 4

3 .

b. The solid obtained by revolving R about the line x = 2 consists
of annuli of outer radius 2 − y2 and inner radius 2 − (2 − y2) = y2, for
0 6 y 6 1, so its volume is equal to

π

1∫

0

(
(2− y2)2 − (y2)2

)
dy = π

1∫

0

(4− 4y2)dy = 4π
(
y − 1

3 y
3
)∣∣∣∣∣∣

1

0

= 8
3π.

Solution to Question . — Revising the equation gives

1

y
√
y2 − 1

dy

dx
= 2x, or arcsec(y) = x2 + 1

3π,

since y(0) = 2 and arcsec(2) = 1
3π. Solving for y gives y = sec

(
x2 + 1

3π
)
.

Solution to Question . — a. If T is the temperature of the object t min-
utes after it has been in the room, then there is a positive real number
a = ek such that

dT
dt

= k(T − 20), or
d
dt

(T − 20) = k(T − 20), so T − 20 = 80at ,

since the equation is one of exponential decay and T0 = 100. Since T1 = 60,
it follows that a = 1

2 , so T − 20 = 80 · 2−t .
b. The temperature of the object T = 30 when 10 = 80 · 2−t , or t = 3. So
the object cools to 30◦C in three minutes.

Solution to Question . — If y = log(cos(x)) then

ds
dx

=

√
1 +

( dy
dx

)2
=

√
1 + tan2(x) = sec(x),

since 0 6 x 6 1
4π (so sec(x) > 0). Therefore, the length of the curve is

s =

1
4π∫

0

sec(x)dx = log(tan(x) + sec(x))

∣∣∣∣∣∣

1
4π

0

= log(1 +
√

2).
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Solution to Question . — a. Since no sequence is determined by any
finite number of its terms, there is a series which begins as displayed and
whose sum is 0. That is one perfectly valid answer.

Alternatively, the sequence
{
4
(
− 3

4

)k}
k>0

generates the displayed terms,

and the sum of the corresponding geometric series is
4

1−
(
− 3

4

) = 16
7 .

b. Since an = e1/(n+1)−e1/(n−1) = An+1−An, where An = e1/n+e1/(n−1),
the sum of the series is

lim
n→∞(a2 + a3 + a4 + · · ·+ an+1) = lim

n→∞(An+2 −A2) = 2−A2 = 2−√e − e.
Solution to Question . — a. Since

lim
n→∞

arctan(n)
1− e−n = 1

2π , 0,

the series in question diverges by the vanishing condition.
b. If n > 2 then cos2(n) < 1, so

an =
3− cos2(n)
n− 1

>
2

n− 1
,

so the series
∑
an diverges by comparison with the harmonic series (p = 1).

Solution to Question . — a. If an =
(−1)n+1n2

3n(2n)!
, then

lim
n→∞

∣∣∣∣∣
an+1
an

∣∣∣∣∣ = lim
n→∞

{(n+ 1
n

)2
· 1

3
· 1

(2n+ 2)(2n+ 1)

}
= 0 < 1

(via dominant terms), so
∑
an is absolutely convergent by the ratio test.

b. If an = (−2n)n
(
sin(1/n)

)n
then

lim
n→∞

n√|an| = lim
n→∞

2sin(1/n)
1/n

= 2 > 1,

since lim
ϑ→0

sin(ϑ)
ϑ

= 1 (with ϑ = 1/n), so
∑
an is divergent by the root test.

c. If n > 2 then

an =
n

n2 + 4
>

n

n2 +n2 =
1
2
· 1
n

,

so
∑
an diverges by comparison with the harmonic series (p = 1). [ The

limit comparison test could be used instead. ] Therefore,
∑

(−1)nan is not
absolutely convergent. On the other hand, lim

n→∞an = 0 (via dominant

terms) and

d
dn

( n

n2 + 4

)
=

4−n2

(n2 + 4)2
< 0, so an > an+1, provided n > 2.

Therefore, the Leibniz test implies that the series
∑

(−1)nan is convergent.
Since the series

∑
(−1)nan is convergent but not absolutely convergent,

it is conditionally convergent.

Solution to Question . — Let % = lim
n→∞

∣∣∣∣∣
an+1
an

∣∣∣∣∣. If % < 1 then
∑
an is

absolutely convergent and if % > 1 then
∑
an is divergent. Therefore, if∑

an is conditionally convergent, % can only be = 1.

Solution to Question . — If un =
(x − 2)n

n32n+1 and x , 2 then

lim
n→∞

∣∣∣∣∣
un+1
un

∣∣∣∣∣ = 1
2 |x − 2| lim

n→∞
( n
n+ 1

)3
= 1

2 |x − 2|.

So the ratio test implies that
∑
un is absolutely convergent if 1

2 |x − 2| < 1,
i.e., 0 < x < 4, and

∑
un is divergent if x < 0 or x > 4. If x = 0 or 4 then

|un| = 1
2n
−3, so

∑
un is absolutely convergent (it is a multiple of a p-series

with p = 3 > 1). Therefore, the radius of convergence of
∑
un is 2 and the

interval of convergence of
∑
un is [0,4].

Solution to Question . — Expanding the geometric series gives

1
1− 2x

=
1

3− 2(x+ 1)
=

1
3
· 1

1− 2
3 (x+ 1)

=
∞∑

k=0

2k

3k+1
(x+ 1)k .

[ Once could instead use the expansion of a binomial power. ]


