Question 1. - Evaluate the following integrals.
a. $\int_{0}^{\frac{1}{4} \pi} \tan ^{2}(x) \sec ^{4}(x) d x$
b. $\int e^{x} \sin (2 x) d x$ c. $\int \frac{7 x^{2}+2 x-1}{x^{2}(x+1)} d x$
d. $\int_{0}^{1} \frac{81 x^{5}}{\sqrt{3 x^{3}+1}} d x$
e. $\int_{0}^{\log (2)} \frac{x}{e^{x}} d x$
f. $\int \frac{\sqrt{9-4 x^{2}}}{x} d x$

Question 2. - Evaluate the following limits.
a. $\lim _{x \rightarrow 0} \frac{x \sin (x)}{1-\cos (x)}$
b. $\lim _{x \rightarrow 0}\left(x+e^{2 x}\right)^{1 / x}$

Question 3. - Evaluate each improper integral or show that it diverges.
a. $\int_{3}^{\infty} \frac{d x}{x^{2}-2 x+5}$
b. $\int_{0}^{1 / e} \frac{d x}{x(\log (x))^{2}}$

Question 4. - Find the area of the region enclosed by the curves $y=$ $x^{2}-4 x$ and $y=-x^{2}+6 x-8$.

Question 5. - Sketch the region \mathscr{R} between the graphs of $y=e^{x}$ and $y=-x$ from $x=0$ to $x=1$. Set up, but do not evaluate, and integral which represents the volume of the solid obtained by revolving \mathscr{R} about the line defined by:
a. $y=4$;
b. $x=-2$.

Question 6. - Solve the differential equation

$$
\sqrt{1-x^{2}} \frac{d y}{d x}=\frac{1}{y}
$$

given that $y=-\sqrt{ } \pi$ when $x=\frac{1}{2}$. Express y as a function of x.
Question 7. - The Bertalanffy equation is used by ecologists to model the growth of organisms over time. It is derived from the differential equation

$$
\frac{d L}{d t}=k(L-M)
$$

where L is the length of the organism at time t, M is the maximal length of the organism and k is a rate constant. Suppose that upon first measurement a salmon is 20 cm long, and after one year that salmon is 50 cm long. If the maximal length is 80 cm , use this model to predict the length of the salmon two years after the first measurement.

Question 8. - Consider the sequence $\left\{a_{n}\right\}$ defined by $a_{n}=(-1)^{n} \frac{e^{n}-n}{e^{n}+n}$. Find the limit of this sequence or else explain why it is divergent.

Question 9. - Determine whether the series

$$
\sum_{n=1}^{\infty} \frac{2+(-3)^{n}}{5^{n}}
$$

is convergent or divergent. If the series is convergent, find its sum.
Question 10. - Suppose that $\sum_{n=1}^{\infty} a_{n}$ is a convergent series of positive
terms. Determine whether each item below is convergent or divergent. Justify your conclusions.
a. The sequence $\left\{a_{n}\right\}$ of terms of the series.
b. The sequence $\left\{a_{1}+a_{2}+a_{3}+\cdots+a_{n}\right\}$ of partial sums of the series.
c. The series $\sum_{n=1}^{\infty} e^{-a_{n}}$.

Question 11. - Determine whether each series converges or diverges. Justify your answers.
a. $\sum_{n=1}^{\infty} \frac{2 n+3}{4 n+5}$
b. $\sum_{k=1}^{\infty} \frac{k!}{k^{k}}$
c. $\sum_{n=1}^{\infty} \frac{\left(4 n^{2}+1\right)^{n}}{(n \pi)^{2 n}}$

Question 12. - Determine whether each series is absolutely convergent, conditionally convergent or divergent. Justify your answers.
a. $\sum_{n=0}^{\infty} \frac{\cos (n)}{3^{n}+1}$
b. $\sum_{n=5}^{\infty} \frac{(-1)^{n}}{n-2 \sqrt{ } n}$

Question 13. - Find the radius and interval of convergence of the power series

$$
\sum_{n=1}^{\infty} \frac{(x+3)^{n}}{n^{3} 5^{n}}
$$

Question 14. - Find the Taylor series of $\frac{1}{(4-3 x)^{2}}$ centred at 1. Write the first four non-zero terms explicitly and express the series in summation notation.

Solution to Question 1. - a. If $y=\tan (x)$ then $d y=\sec ^{2}(x) d x$ and $\sec ^{2}(x)=y^{2}+1$, so

$$
\int_{0}^{\frac{1}{4} \pi} \tan ^{2}(x) \sec ^{4}(x) d x=\int_{0}^{1} y^{2}\left(y^{2}+1\right) d y=\left.\left(\frac{1}{5} y^{5}+\frac{1}{3} y^{3}\right)\right|_{0} ^{1}=\frac{1}{5}+\frac{1}{3}=\frac{8}{15}
$$

b. Repeated partial integration with absorption yields

$$
\begin{aligned}
\int \underbrace{e^{x}}_{\int} \cdot \underbrace{\sin (2 x)}_{D} d x & =e^{x} \sin (2 x)-2 e^{x} \cos (2 x)-\underbrace{4 \int e^{x} \sin (2 x) d x}_{\text {(absorb on the left) }} \\
& =\frac{1}{5} e^{x}(\sin (2 x)-2 \cos (2 x))
\end{aligned}
$$

c. The resolution into partial fractions of the integrand is

$$
\frac{7 x^{2}+2 x-1}{x^{2}(x+1)}=\frac{3}{x}-\frac{1}{x^{2}}+\frac{4}{x+1}
$$

where the coefficients over x^{2} and $x+1$ are obtained by covering and the coefficient over x is obtained by comparing the quadratic coefficients. Thus,

$$
\int \frac{7 x^{2}+2 x-1}{x^{2}(x+1)} d x=\log \left|x^{3}(x+1)^{4}\right|+\frac{1}{x}
$$

d. If $y=\sqrt{3 x^{3}+1}$ then $y^{2}=3 x^{3}+1,2 y d y=9 x^{2} d x$, and $x^{3}=\frac{1}{3}\left(y^{2}-1\right)$, so $81 x^{5} d x=6 y\left(y^{2}-1\right) d y$. Hence,

$$
\int_{0}^{1} \frac{81 x^{5}}{\sqrt{3 x^{3}+1}} d x=\int_{1}^{2} \frac{6 y\left(y^{2}-1\right)}{y} d y=\left.\left(2 y^{3}-6 y\right)\right|_{1} ^{2}=8
$$

e. Partial integration gives

$$
\int_{0}^{\log (2)} \underbrace{x}_{D} \cdot \underbrace{e^{-x}}_{\int} d x=\left.\left(-x e^{-x}-e^{-x}\right)\right|_{0} ^{\log (2)}=\frac{1}{2} \log \left(\frac{1}{2} e\right)
$$

f. If $y=\sqrt{9-4 x^{2}}$ then $y^{2}=9-4 x^{2}$ and $2 y d y=-8 x d x$, or $4 x d x=-y d y$, and $4 x^{2}=9-y^{2}$, so

$$
\begin{aligned}
\int \frac{\sqrt{9-4 x^{2}}}{x} d x & =\int \frac{\sqrt{9-4 x^{2}}}{4 x^{2}} \cdot 4 x d x=\int \frac{y^{2}}{y^{2}-9} d y=\int\left\{1+\frac{9}{y^{2}-9}\right\} d y \\
& =y+\frac{3}{2} \log \left|\frac{y-3}{y+3}\right|=\sqrt{9-4 x^{2}}+\frac{3}{2} \log \left|\frac{\sqrt{9-4 x^{2}}-3}{\sqrt{9-4 x^{2}}+3}\right| \\
& =\sqrt{9-4 x^{2}}-3 \log \frac{3+\sqrt{9-4 x^{2}}}{|x|}
\end{aligned}
$$

Solution to Question 2. - a. The expansions of sine and cosine yield

$$
\lim _{x \rightarrow 0} \frac{x \sin (x)}{1-\cos (x)}=\lim _{x \rightarrow 0} \frac{x^{2}-\frac{1}{6} x^{4}+\frac{1}{120} x^{6}-\& c .}{\frac{1}{2} x^{2}-\frac{1}{24} x^{4}+\frac{1}{720} x^{6}-\& c .}=2
$$

(via dominant terms).
Alternatively, two applications of l'Hôpital's rule gives

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{x \sin (x)}{1-\cos (x)} & =\lim _{x \rightarrow 0} \frac{\sin (x)+x \cos (x)}{\sin (x)} \\
& =\lim _{x \rightarrow 0} \frac{2 \cos (x)-x \sin (x)}{\cos (x)} \\
& =2
\end{aligned}
$$

b. The limit $\lim _{t \rightarrow 0}(1+t)^{1 / t}=e$ gives (via dominant terms)

$$
\lim _{x \rightarrow 0}\left(x+e^{2 x}\right)^{1 / x}=\lim _{x \rightarrow 0}\left(x+e^{2 x}\right)^{\frac{1}{e^{2 x}+x-1} \cdot \frac{e^{2 x}+x-1}{x}}=e^{3}
$$

since $\frac{e^{2 x}+x-1}{x}=\frac{3 x+\frac{1}{2}(2 x)^{2}+\frac{1}{6}(2 x)^{3}+\& c \text {. }}{x}$ by the expansion of $e^{2 x}$. Or the exponent can be obtained by one application of l'Hôpital's rule:

$$
\lim _{x \rightarrow 0} \frac{e^{2 x}+x-1}{x}=\lim _{x \rightarrow 0} \frac{2 e^{2 x}+1}{1}=3
$$

Solution to Question 3. - a. Since $x^{2}-2 x+5=(x-1)^{2}+4$, the integral is

$$
\lim _{x \rightarrow \infty} \int_{3}^{x} \frac{d x}{(x-1)^{2}+4}=\left.\lim _{x \rightarrow \infty} \frac{1}{2} \arctan \left(\frac{1}{2}(x-1)\right)\right|_{3} ^{x}=\frac{1}{2}\left(\frac{1}{2} \pi-\frac{1}{4} \pi\right)=\frac{1}{8} \pi
$$

b. If $y=\log (x)$ then $d y=d x / x$, so that

$$
\int_{0}^{1 / e} \frac{d x}{x(\log (x))^{2}}=\lim _{y \rightarrow-\infty} \int_{y}^{-1} \frac{d y}{y^{2}}=\left.\lim _{y \rightarrow-\infty}\left(-\frac{1}{y}\right)\right|_{y} ^{-1}=\lim _{y \rightarrow-\infty}\left(1-\frac{1}{y}\right)=1
$$

Solution to Question 4. - The curves meet where $-x^{2}+6 x-8=x^{2}-4 x$, or $0=2 x^{2}-10 x+8=2(x-1)(x-4)$. If $1<x<4$ the last difference is negative, so the area enclosed by the curves is (note the sign adjustment)

$$
\int_{4}^{1}\left(2 x^{2}-10 x+8\right) d x=\left.\left(\frac{2}{3} x^{3}-5 x^{2}+8 x\right)\right|_{4} ^{1}=\frac{2}{3}(-63)-5(-15)+8(-3)=9
$$

Solution to Question 5. - Since $e^{x}>0 \geqslant-x$ for $0 \leqslant x \leqslant 1$, the curves do not intersect on the given interval. Below is a sketch in which the region \mathscr{R} is shaded in cyan.

a. The solid obtained by revolving \mathscr{R} about $y=4$ consists of annuli of outer radius $4+x$ and inner radius $4-e^{x}$, for $0 \leqslant x \leqslant 1$, so its volume is

$$
\pi \int_{0}^{1}\left((4+x)^{2}-\left(4-e^{x}\right)^{2}\right) d x
$$

b. The solid obtained by revolving \mathscr{R} about the $x=-2$ consists of concentric cylindrical shells of radius $x+2$ and height $e^{x}+x$, for $0 \leqslant x \leqslant 1$, so its volume is

$$
2 \pi \int_{0}^{1}(x+2)\left(e^{x}+x\right) d x
$$

Solution to Question 6. - Revising the equation gives

$$
2 y \frac{d y}{d x}=\frac{2}{\sqrt{1-x^{2}}}, \quad \text { or } \quad y^{2}=2 \arcsin (x)+\frac{2}{3} \pi
$$

since $y=-\sqrt{ } \pi$ when $x=\frac{1}{2}$ and $2 \arcsin \left(\frac{1}{2}\right)=\frac{1}{3} \pi$. Solving for y then gives $y=-\sqrt{2 \arcsin (x)+\frac{2}{3} \pi}$. [Note the sign.]
Solution to Question 7. - Since M is a constant, the given equation is equivalent to

$$
\frac{d}{d t}(L-M)=k(L-M), \quad \text { and so } \quad L-M=A a^{t}
$$

where A is a constant and $a=e^{k}$. It follows that

$$
a=\frac{L_{2}-80}{50-80}=\frac{50-80}{20-80}=\frac{1}{2}, \quad \text { so } \quad L_{2}=80+\frac{1}{2} \cdot(-30)=65
$$

Thus after two years the salmon is 65 cm long.
Solution to Question 8. - Since $\lim _{n \rightarrow \infty} \frac{e^{n}-n}{e^{n}+n}=1$ (via dominant terms), it follows that the sequence $\left\{a_{n}\right\}$ oscillates and diverges (its terms are nearly 1 if n is large and even, and nearly -1 if n is large and odd).

Solution to Question 9. - The series in question is a linear combination of convergent geometric series:

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{2+(-3)^{n}}{5^{n}} & =\sum_{n=1}^{\infty} 2\left(\frac{1}{5}\right)^{n}+\sum_{n=1}^{\infty}\left(-\frac{3}{5}\right)^{n}=\frac{2}{5} \cdot \frac{1}{1-\frac{1}{5}}-\frac{3}{5} \cdot \frac{1}{1-\left(-\frac{3}{5}\right)} \\
& =\frac{1}{2}-\frac{3}{8}=\frac{1}{8}
\end{aligned}
$$

Solution to Question 10. - a. The sequence $\left\{a_{n}\right\}$ converges to 0 by the vanishing condition.
b. The sequence $\left\{a_{1}+a_{2}+a_{3}+\cdots+a_{n}\right\}$ converges to the sum of the series.
c. Since $\lim _{n \rightarrow \infty} e^{-a_{n}}=1 \neq 0, \sum e^{-a_{n}}$ is divergent by the vanishing condition.

Solution to Question 11. - a. Since $\lim _{n \rightarrow \infty} \frac{2 n+3}{4 n+5}=\frac{1}{2} \neq 0$, the vanishing condition implies that the series in question is divergent.
b. Since

$$
\lim _{k \rightarrow \infty}\left\{\frac{(k+1)!}{(k+1)^{k+1}} \cdot \frac{k^{k}}{k!}\right\}=\lim _{k \rightarrow \infty} \frac{k^{k}}{(k+1)^{k}}=\lim _{k \rightarrow \infty}\left(1+\frac{1}{k}\right)^{-k}=e^{-1}<1
$$

the ratio test implies that the series in question is convergent.
c. Since

$$
\lim _{n \rightarrow \infty} \sqrt[n]{\frac{\left(4 n^{2}+1\right)^{n}}{(n \pi)^{2 n}}} \lim _{n \rightarrow \infty} \frac{4 n^{2}+1}{\pi^{2} n^{2}}=\frac{4}{\pi^{2}}<1
$$

the root test implies that the series in question is convergent.
Solution to Question 12. - a. If $n \geqslant 0$ then

$$
\left|\frac{\cos (n)}{3^{n}+1}\right|<\frac{1}{3^{n}+1}<\left(\frac{1}{3}\right)^{n}
$$

and $\sum\left(\frac{1}{3}\right)^{n}$ is a convergent geometric series $\left(r=\frac{1}{3},|r|<1\right)$, the comparison test implies that the series in question is absolutely convergent.
b. If $n>4$ then

$$
a_{n}=\frac{1}{n-2 \sqrt{ } n}>\frac{1}{n}>0
$$

so $\sum a_{n}$ is divergent by comparison with the harmonic series (p-series, with $p=1$). Thus, the series $\sum(-1)^{n} a_{n}$ is not absolutely convergent. But plainly $\lim _{n \rightarrow \infty} a_{n}=0$, and if $n>4$ (so that $\sqrt{ } n$ and $\sqrt{ } n-2$ are positive) then

$$
a_{n}=\frac{1}{(\sqrt{n}-2) \sqrt{n}}>\frac{1}{(\sqrt{n+1}-2) \sqrt{n+1}}=a_{n+1}
$$

so the Leibniz test implies that the series $\sum(-1)^{n} a_{n}$ is convergent.
Since the series $\sum(-1)^{n} a_{n}$ is convergent but not absolutely convergent, it is conditionally convergent.
Solution to Question 13. - If $u_{n}=\frac{(x+3)^{n}}{n^{3} 5^{n}}$ and $x \neq-3$ then

$$
\lim _{n \rightarrow \infty}\left|\frac{u_{n+1}}{u_{n}}\right|=\frac{1}{5}|x+3| \lim _{n \rightarrow \infty}\left(\frac{n}{n+1}\right)^{3}=\frac{1}{5}|x+3|
$$

so the ratio test implies that the series $\sum u_{n}$ is absolutely convergent if $\frac{1}{5}|x+3|<1$, i.e., $-8<x<2$, and divergent if $x<-8$ or $x>2$. If $x=-8,2$ then $\sum\left|u_{n}\right|=\sum n^{-3}$ is a convergent p-series $(p=3>1)$, so the series $\sum u_{n}$ is absolutely convergent. Thus, the power series $\sum u_{n}$ has radius of convergence 5 and interval of convergence $[-8,2]$.
Solution to Question 14. - From the basic geometric series we have

$$
\begin{gathered}
\frac{1}{4-3 x}=\frac{1}{1-3(x-1)}=\sum_{k=0}^{\infty} 3^{k}(x-1)^{k} \\
\frac{1}{(4-3 x)^{2}}=\frac{1}{3} \cdot \frac{d}{d x}\left(\frac{1}{4-3 x}\right)=\sum_{k=1}^{\infty} k 3^{k-1}(x-1)^{k-1}
\end{gathered}
$$

so

Alternatively, the expansion of a binomial power gives

$$
\begin{aligned}
\frac{1}{(4-3 x)^{2}} & =(1+(-3)(x-1))^{-2} \\
& =1+\sum_{n=1}^{\infty} \frac{-2}{1} \cdot \frac{-3}{2} \cdot \frac{-4}{3} \cdots \frac{-(1+n)}{n}(-3)^{n}(x-1)^{n} \\
& =\sum_{n=0}^{\infty}(1+n) 3^{n}(x-1)^{n}
\end{aligned}
$$

[Note that the first term is absorbed by the simplified pattern of terms.] The two expansions are related by $k=n+1$, and the first four non-zero terms of the series are

$$
1+6(x-1)+27(x-1)^{2}+108(x-1)^{3}+\cdots
$$

