- 1. You are given $A = \begin{pmatrix} 1 & 1 & 3 & 3 \\ -1 & -1 & -3 & -3 \\ -2 & -1 & -4 & -3 \\ 0 & 0 & 2 & 3 \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} -6 \\ 6 \\ 7 \\ 5 \end{pmatrix}$
- a. Find the general solution of $A\mathbf{x} = \mathbf{b}$
- b. Find the specific solution for which $x_1 = x_2$ and $x_3 = x_4$.
- c. Which columns of A, if any, are in the solution set of $A\mathbf{x} = \mathbf{b}$.
- d. Which columns of *A*, if any, are in the null space of *A*.
- e. Find a basis for the row space of A.
- 2. Let A and B be 4×4 matrices with det(A) = 3 and det(B) = -2. If possible, compute:
- a. $\det((2A)^{-1})$

3. Let
$$A = \begin{pmatrix} 2 & -2 & 2 & 3 \\ 0 & 2 & 1 & 1 \\ 1 & -1 & 0 & 1 \\ 0 & 0 & 6 & 2 \end{pmatrix}$$
. a. Find det(A) b. How many solutions does $A\mathbf{x} = \mathbf{0}$ have?

- 5. The graph of a quadratic polynomial contains the point (2,-1) and is tangent to the line defined by 2x - y = 8 where x = 1. Write a matrix equation whose solution gives the coefficients of the polynomial, and use Cramer's rule to find the constant term only.
- **6.** Given that \mathbf{u} , \mathbf{v} , \mathbf{w} are linearly independent vectors in \mathbb{R}^n , determine all values of k so that the vectors $\mathbf{u}+2\mathbf{v}$, $\mathbf{v}+3\mathbf{w}$, $k\mathbf{u}+\mathbf{w}$ are linearly independent.
- 7. a. Given nonsingular matrices B and D, find the inverse of $\binom{B}{C}$
- b. Use Part a to give the inverse of $\begin{bmatrix} -3 & 2 & 0 & 0 & 0 \\ 2 & -1 & 0 & 0 & 0 \\ 1 & 2 & 1 & -2 & 0 \\ 1 & 2 & 0 & 1 & 0 \\ 1 & 2 & 0 & 0 & 1 \end{bmatrix}$
- 8. Let $A = \begin{pmatrix} 1 & 2 & -1 \\ 2 & 9 & 1 \\ 6 & -8 & k \end{pmatrix}$. a. Find an LU decomposition of A. b. Compute the determinant of A. c. For which k is A not invertible?
- d. Express L as a product of elementary matrices.
- **9.** Let *V* be the set of all 2×2 upper triangular matrices.
- a. What is the dimension of V?
- b. Express $\begin{pmatrix} 19 & 20 \\ 0 & -3 \end{pmatrix}$ as a linear combination of $\begin{pmatrix} 2 & 5 \\ 0 & 1 \end{pmatrix}$ and $\begin{pmatrix} -1 & 3 \\ 0 & 2 \end{pmatrix}$. c. Does $\left\{ \begin{pmatrix} 2 & 5 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 3 \\ 0 & 2 \end{pmatrix}, \begin{pmatrix} 19 & 20 \\ 0 & -3 \end{pmatrix} \right\}$ span V? Justify your answer.

- 10. In \mathbb{R}^3 let $\mathbf{u} = \mathbf{e}_1 + 2\mathbf{e}_2 + 2\mathbf{e}_3 \in \mathbb{R}^3$, and let $W = \{\mathbf{x} \in \mathbb{R}^3 : \mathbf{u}^T \mathbf{x} = 0\}$. Given that W is a subspace of \mathbb{R}^3 , find a basis for W.
- 11. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear tranformation which satisfies

$$T\begin{pmatrix}1\\1\end{pmatrix}=\begin{pmatrix}2\\1\end{pmatrix}$$
 and $T\begin{pmatrix}4\\6\end{pmatrix}=\begin{pmatrix}5\\3\end{pmatrix}$.

Find the standard matrix of *T*. Find a vector **u** such that $T(\mathbf{u}) = \begin{pmatrix} -2 \\ 10 \end{pmatrix}$.

- 12. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by $T \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} a-2b \\ b^2-a \end{pmatrix}$.
- a. Evaluate $T\begin{pmatrix} 1\\2 \end{pmatrix}$ and $T\begin{pmatrix} 3\\6 \end{pmatrix}$.
- b. Explain why the results in part a imply that *T* is not linear.
- c. Find a non-zero vector \mathbf{x} such that $T(\mathbf{x}) = \mathbf{0}$.
- 13. Given the points A(5, 2, 0), B(7, 0, -2), C(2, 1, 1) and D(4, 3, 4).
- a. Find a vector of length 2 which is parallel to the vector AB.
- b. Find an equation of the line AB.
- c. Find the distance between D and the line AB.
- d. Find the point on the line *AB* which is closest to *D*.
- e. Find the area of the triangle ABC.
- 14. Let V be the set of 2×2 singular matrices.
- a. Is V closed under scalar multiplication? Justify.
- b. Is V closed under addition? Justify.
- 15. Let A be a 2×2 reflection matrix and let B be a 2×2 rotation matrix. Complete each of the following sentences with **must**, **might** or **cannot**.

- a. A^2 _____ equal A. b. A^{-1} ____ equal A. c. B^3 ____ equal B. d. $\det(A^2)$ ____ equal $\det(B^2)$.
- **16.** Let $\ell_1 = \mathbf{p} + \operatorname{Span}\{\mathbf{u}\}$ and $\ell_2 = \mathbf{q} + \operatorname{Span}\{\mathbf{v}\}$, where

$$\mathbf{p} = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}, \quad \mathbf{q} = \begin{pmatrix} 0 \\ -3 \\ 2 \end{pmatrix}, \quad \mathbf{u} = \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix} \quad \text{and} \quad \mathbf{v} = \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}.$$

- b. Find the cosine of the acute angle formed by the lines.
- c. Find an implicit equation of the plane containing ℓ_1 and ℓ_2 .
- d. Find the *x*-intercept of the plane from part c.
- 17. Let **u** and **v** be vectors in \mathbb{R}^n such that $\mathbf{u} + 2\mathbf{v}$ is orthogonal to $\mathbf{u} 2\mathbf{v}$, and $\|\mathbf{u}\| = 1$. Find $\|\mathbf{v}\|$.
- 18. Give an equation of the line which contains the point P(1,5,2) and is parallel to the planes defined by $x_1 + 2x_2 + x_3 = 4$ and $2x_1 + 5x_2 + 3x_3 = 1$.

1. a. Write $A = (\mathbf{a_1} \ \mathbf{a_2} \ \mathbf{a_3} \ \mathbf{a_4})$. By inspection, the first two columns of A are linearly independent, $\mathbf{a_3} = \mathbf{a_1} + 2\mathbf{a_2}$, $\mathbf{a_4} = 3\mathbf{a_2}$ and $\mathbf{b} = -\mathbf{a_1} - 5\mathbf{a_2}$, so the solution of $A\mathbf{x} = \mathbf{b}$ is $\mathbf{p} + \mathrm{Span}\{\mathbf{u}, \mathbf{v}\}$, where

$$\mathbf{p} = \begin{pmatrix} -1 \\ -5 \\ 0 \\ 0 \end{pmatrix}, \quad \mathbf{u} = \begin{pmatrix} -1 \\ -2 \\ 1 \\ 0 \end{pmatrix} \quad \text{and} \quad \mathbf{v} = \begin{pmatrix} 0 \\ -3 \\ 0 \\ 1 \end{pmatrix}.$$

- b. The solution $\mathbf{p} \mathbf{u} \mathbf{v} = -\begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \end{pmatrix}$ is as required.
- c. The columns $\mathbf{a}_1 = \mathbf{p} 2\mathbf{u}$ and $\mathbf{a}_3 = \mathbf{p} 4\mathbf{u} + 2\mathbf{v}$ are in the solution of $A\mathbf{x} = \mathbf{b}$.
- d. The columns $\mathbf{a}_2 = -\mathbf{u} + \mathbf{v}$ and $\mathbf{a}_4 = 3\mathbf{a}_2$ are in the solution of $A\mathbf{x} = \mathbf{0}$.
- e. Writing $A^T = (\mathbf{r}_1 \ \mathbf{r}_2 \ \mathbf{r}_3 \ \mathbf{r}_4)$, the vectors \mathbf{r}_1 , \mathbf{r}_4 form a basis of Row(A), since they are plainly linearly independent and rank(A) = 2.
- **2.** a. By multilinearity and product preservation, $det((2A)^{-1}) = \frac{1}{2^4 \cdot 3} = \frac{1}{48}$.
- b. Product preservation and invariance under transposition implies that $det(B^{-1}A^TB) = det(A) = 3$, by
- c. The determinant of $B + B^{-1}$ is undetermined. For example, if B = I then $det(B + B^{-1}) = 16$, and if $B = \begin{pmatrix} -\mathbf{e}_1 & \mathbf{e}_2 & \mathbf{e}_3 & \mathbf{e}_4 \end{pmatrix}$ then $det(B + B^{-1}) = -16$.
- 3. A direct calculation gives

$$\det(A) = \begin{vmatrix} 0 & 0 & 2 & 1 \\ 0 & 2 & 1 & 1 \\ 1 & -1 & 0 & 1 \\ 0 & 0 & 6 & 2 \end{vmatrix} = \begin{vmatrix} 0 & 2 & 1 \\ 2 & 1 & 1 \\ 0 & 6 & 2 \end{vmatrix} = -2 \begin{vmatrix} 2 & 1 \\ 6 & 2 \end{vmatrix} = 4.$$

Since A is nonsingular, the equation $A\mathbf{x} = \mathbf{0}$ has only one solution (i.e., $\mathbf{0}$).

4. If A is a skew-symmetric $n \times n$ matrix and n is odd, then

$$det(A) = det(A^T) = det(-A) = (-1)^n det(A) = -det(A),$$

so det(A) = 0.

5. If the graph of $p(x) = a + bx + cx^2$ contains (2, -1) and is tangent to the line defined by 2x - y = 8 where x = 1, then p(2) = -1, p(1) = -6 and p'(1) = 2, which is equivalent to

$$\begin{pmatrix} 1 & 2 & 4 \\ 1 & 1 & 1 \\ 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} -1 \\ -6 \\ 2 \end{pmatrix}; \text{ also, } a = \frac{\begin{vmatrix} -1 & 2 & 4 \\ -6 & 1 & 1 \\ 2 & 1 & 2 \end{vmatrix}}{\begin{vmatrix} 1 & 2 & 4 \\ 1 & 1 & 1 \\ 0 & 1 & 2 \end{vmatrix}} = -\frac{\begin{vmatrix} -11 & -23 \\ 5 & 10 \end{vmatrix}}{\begin{vmatrix} -1 & -3 \\ 1 & 2 \end{vmatrix}} = -5$$

by Cramer's rule.

6. Since u, v, w are linearly independent and

$$(\mathbf{u} + 2\mathbf{v} \quad \mathbf{v} + 3\mathbf{w} \quad k\mathbf{u} + \mathbf{w}) = (\mathbf{u} \quad \mathbf{v} \quad \mathbf{w}) \begin{pmatrix} 1 & 0 & k \\ 2 & 1 & 0 \\ 0 & 3 & 1 \end{pmatrix},$$

the vectors $\mathbf{u} + 2\mathbf{v}$, $\mathbf{v} + 3\mathbf{w}$, $k\mathbf{u} + \mathbf{w}$ are linearly independent if, and only if,

$$\begin{vmatrix} 1 & 0 & k \\ 2 & 1 & 0 \\ 0 & 3 & 1 \end{vmatrix} = \begin{vmatrix} 1 & -2k \\ 3 & 1 \end{vmatrix} = 1 + 6k \neq 0; \text{ equivalently, } k \neq -\frac{1}{6}.$$

7. For nonsingular B and D, the equation

$$\begin{pmatrix} I & 0 \\ 0 & I \end{pmatrix} = \begin{pmatrix} B & 0 \\ C & D \end{pmatrix} \begin{pmatrix} U & X \\ V & Y \end{pmatrix} = \begin{pmatrix} BU & BX \\ CU + DV & CX + DY \end{pmatrix}$$

is equivalent to $U = B^{-1}$, X = 0, $CB^{-1} + DV = 0$ and $Y = D^{-1}$. For square matrices M and N, MN = I implies that NM = I, so it follows that

$$\begin{pmatrix} B & 0 \\ C & D \end{pmatrix}^{-1} = \begin{pmatrix} B^{-1} & 0 \\ -D^{-1}CB^{-1} & D^{-1} \end{pmatrix}.$$

In the case at hand, the blocks of the inverse are

$$B^{-1} = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}, \qquad D^{-1} = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

(each obtained by inspection), and

$$-D^{-1}CB^{-1} = -\begin{pmatrix} 3 & 6 \\ 1 & 2 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix} = -\begin{pmatrix} 15 & 24 \\ 5 & 8 \\ 5 & 8 \end{pmatrix}.$$

(The top right block is the zero 2×3 matrix.)

8. An LU factorizton of A is

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 6 & -4 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & -1 \\ 0 & 5 & 3 \\ 0 & 0 & k+18 \end{pmatrix}, \quad \text{via} \quad \begin{array}{c} 5 & 3 \\ -20 & k+6 \end{array} \sim k+18.$$

The derminant of A is equal to the determinant of U, or 5(k+18), so that A is singular (not invertible) if, and only if, k = -18. Also,

$$\begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 6 & -4 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 6 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -4 & 1 \end{pmatrix}$$

is an elementary factorization of L.

9. The matrices

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

form a basis of the linear space V of 2×2 upper triangular matrices, so the dimension of V is 3. Since $7 \cdot 2 - 5(-1) = 19$, $7 \cdot 5 - 5 \cdot 3 = 10$ and $7 \cdot 1 - 5(-2) = -3$, it follows that

$$7\begin{pmatrix} 2 & 5 \\ 0 & 1 \end{pmatrix} - 5\begin{pmatrix} -1 & 3 \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} 19 & 20 \\ 0 & -3 \end{pmatrix}.$$

Thus, the matrices

$$\begin{pmatrix} 2 & 5 \\ 0 & 1 \end{pmatrix}$$
, $\begin{pmatrix} -1 & 3 \\ 0 & 2 \end{pmatrix}$ and $\begin{pmatrix} 19 & 20 \\ 0 & -3 \end{pmatrix}$

span a 2 dimensional subspace of V; they do not span V.

10. If

$$\mathbf{u} = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}, \quad \mathbf{v} = \begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix} \quad \text{and} \quad \mathbf{w} = \begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix},$$

then W is the set of all vectors in \mathbb{R}^3 which are orthogonal to \mathbf{u} , and $\{\mathbf{v},\mathbf{w}\}$ is a basis of W.

11. The standard matrix A of T satisfies

$$A\begin{pmatrix} 1 & 4 \\ 1 & 6 \end{pmatrix} = \begin{pmatrix} 2 & 5 \\ 1 & 3 \end{pmatrix},$$

or equivalently (inverting the right factor on the left)

$$A = \frac{1}{2} \begin{pmatrix} 2 & 5 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} 6 & -4 \\ -1 & 1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 7 & -3 \\ 3 & -1 \end{pmatrix}.$$

Then (by inverting A)

$$T(\mathbf{u}) = \begin{pmatrix} -2\\10 \end{pmatrix}$$
 if, and only if, $\mathbf{u} = \begin{pmatrix} -1 & 3\\-3 & 7 \end{pmatrix} \begin{pmatrix} -2\\10 \end{pmatrix} = \begin{pmatrix} 32\\76 \end{pmatrix}$.

12. Direct calculations using the definition of T give

$$T\begin{pmatrix} 1\\2 \end{pmatrix} = \begin{pmatrix} -3\\3 \end{pmatrix}$$
 and $T\begin{pmatrix} 3\\6 \end{pmatrix} = \begin{pmatrix} -9\\33 \end{pmatrix} \neq 3T\begin{pmatrix} 1\\2 \end{pmatrix}$,

so *T* does not preserve scalar multiplication. Also, the calculation

$$T\begin{pmatrix} 4\\2 \end{pmatrix} = \begin{pmatrix} 0\\0 \end{pmatrix}$$

is a gives a non-zero vector \mathbf{x} as required. (This vector obtained by solving $0 = a - 2b = a - b^2$, which gives b = 0 or b = 2.)

13. Let

$$\mathbf{u} = \frac{1}{2} \overrightarrow{AB} = \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}, \quad \mathbf{v} = \overrightarrow{AC} = \begin{pmatrix} -3 \\ -1 \\ 1 \end{pmatrix} \quad \text{and} \quad \mathbf{w} = \overrightarrow{AD} = \begin{pmatrix} -1 \\ 1 \\ 4 \end{pmatrix}.$$

a. Since $\|\mathbf{u}\| = \sqrt{3}$, the vectors

$$\pm \hat{\mathbf{u}} = \pm \frac{2}{3} \sqrt{3} \mathbf{u} = \pm \frac{2}{3} \sqrt{3} \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}$$

have length 2 and are parallel to \overrightarrow{AB} .

- b. The line AB is equal to $\overrightarrow{OA} + \operatorname{Span}\left\{\frac{1}{2}\mathbf{u}\right\} = \begin{pmatrix} 5\\2\\0 \end{pmatrix} + \operatorname{Span}\left\{\begin{pmatrix} 1\\-1\\-1 \end{pmatrix}\right\}.$
- c. The distance between D and the line AB is the length of

$$\operatorname{perp}_{\mathbf{u}} \mathbf{w} = \mathbf{w} - \operatorname{proj}_{\mathbf{u}} \mathbf{w} = \mathbf{w} - \frac{\mathbf{u}^T \mathbf{w}}{\mathbf{u}^T \mathbf{u}} \mathbf{u} = \begin{pmatrix} -1 \\ 1 \\ 4 \end{pmatrix} + 2 \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix},$$

which is $\sqrt{6}$

d. The point on the line AB which is closest to D is

$$\overrightarrow{OA} + \operatorname{proj}_{\mathbf{u}} \mathbf{w} = \begin{pmatrix} 5 \\ 2 \\ 0 \end{pmatrix} - 2 \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix} = \begin{pmatrix} 3 \\ 4 \\ 2 \end{pmatrix}.$$

e. The area of triangle ABC is the length of

$$\frac{1}{2}\overrightarrow{AB} \times \overrightarrow{AC} = \mathbf{u} \times \mathbf{v} = \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix} \times \begin{pmatrix} -3 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} -2 \\ 2 \\ -4 \end{pmatrix},$$

which is $2\sqrt{6}$.

14. If $A \in V$ and $\alpha \in \mathbb{R}$ then $\det(A) = 0$, and thus $\det(\alpha A) = \alpha^2 \det(A) = 0$, so $\alpha A \in V$. So V is closed under scalar multiplication. On the other hand,

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \ \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \in V, \qquad \text{but} \qquad \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = I_2 \not\in V.$$

So *V* is not closed under addition.

15. Here *A* is a 2×2 reflection matrix and *B* be a 2×2 rotation matrix.

- a. A^2 cannot equal A.
- b. A^{-1} must equal A.
- c. B^3 might equal B.
- d. $det(A^2)$ must equal $det(B^2)$

16. a. The equation $\mathbf{p} + s\mathbf{u} = \mathbf{q} + t\mathbf{v}$ is solved for s, -t by reducing

$$\begin{pmatrix} \mathbf{u} & \mathbf{v} & \mathbf{q} - \mathbf{p} \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & -2 \\ 0 & 3 & -6 \\ 0 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{pmatrix},$$

which gives the point of intersection

$$\mathbf{p} + 2\mathbf{u} = \mathbf{q} + 2\mathbf{v} = \begin{pmatrix} 4 \\ -1 \\ 6 \end{pmatrix}.$$

b. The cosine of the acute angle formed by ℓ_1 and ℓ_2 is

$$\frac{|\mathbf{u}^T \mathbf{v}|}{\|\mathbf{u}\| \|\mathbf{v}\|} = \frac{7}{(\sqrt{11})(3)} = \frac{7}{33} \sqrt{11}.$$

c. The vector

$$\mathbf{u} \times \mathbf{v} = \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix} \times \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} -5 \\ 4 \\ 3 \end{pmatrix}$$

is a normal vector to the plane containing ℓ_1 and ℓ_2 , so this plane is defined by 5x - 4x - 3z = 6 (the right side is obtained by evaluating at **p**, or **q**).

d. The *x* intecept is the point on the plane where y = z = 0, which is $\frac{6}{5}$ **e**₁.

17. If $\mathbf{u} + 2\mathbf{v}$ is orthogonal to $\mathbf{u} - 2\mathbf{v}$ and $||\mathbf{u}|| = 1$, then

$$0 = (\mathbf{u} + 2\mathbf{v})^{T} (\mathbf{u} - 2\mathbf{v}) = \mathbf{u}^{T} \mathbf{u} - 4\mathbf{v}^{T} \mathbf{v} = 1 - 4||\mathbf{v}||^{2},$$

which implies that $\|\mathbf{v}\| = \frac{1}{2}$.

18. The vector

$$\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} \times \begin{pmatrix} 2 \\ 5 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix},$$

since it is perpendicular to the normals of the given planes, is parallel to both of them. Therefore, the line which contains P(1,5,2) and is parallel to both planes is

$$\begin{pmatrix} 1 \\ 5 \\ 2 \end{pmatrix}$$
 + Span $\left\{ \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \right\}$.