Question 1. — Given
$$A = \begin{pmatrix} 2 & -4 & 2 & 2 \\ 3 & -7 & 2 & 2 \\ 4 & -7 & 5 & 3 \end{pmatrix}$$
, $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} 0 \\ -9 \\ -1 \end{pmatrix}$.

- a. Find the general solution of $A\mathbf{x} = \mathbf{b}$.
- b. Find a specific solution of $A\mathbf{x} = \mathbf{b}$ such that $x_1 = x_2$.
- c. Write the third column of A as a linear combination of the first two columns of A, or else explain why this is not possible.
 - d. True or false: There is a vector $\mathbf{c} \in \mathbb{R}^3$ such that $A\mathbf{x} = \mathbf{c}$ has no solution.
 - e. True or false: The last three columns of *A* form an invertible matrix.

Question 2. — The graph of $y = ax^2 + bx + c$ contains the points (3, 27) and (2, -6). The tangent line to the graph where x = 2 has slope 12. Write (but do not solve) an equation (or linear system) whose solution gives *a*, *b* and *c*.

Question 3. — Given
$$A = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & \frac{3}{2} \\ 2 & 3 & -1 \\ 0 & -1 & 8 \end{pmatrix}$$
. a. Find A^{-1} . b. Given that $\det(A) = \frac{1}{2}$, find $\operatorname{adj}(A)$.

Question 4. — Given that
$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = 10$$
, find $\begin{vmatrix} 3g+a & 3h+b & 2 & 3i+c \\ d+2a & e+2b & 3 & f+2c \\ a & b & 4 & c \\ 0 & 0 & 5 & 0 \end{vmatrix}$.

Question 5. — Given that the matrices A and B are invertible, solve $A^{-1}B(X+I)^{-1}A = 2A$ for X.

Question 6. — You are given that A is invertible and $B = \begin{pmatrix} 0 & A \\ I & 0 \end{pmatrix}$.

a. Find B^{-1} .

- c. If $A^5 = I$ and $A \ne I$, find the smallest positive integer m such that $B^m = I$.

Question 7. — You are given
$$A = \begin{pmatrix} 3 & 6 & 3 & 21 \\ -2 & -4 & -2 & -14 \\ -1 & -2 & 2 & 2 \end{pmatrix} \sim R = \begin{pmatrix} 1 & 2 & 0 & 4 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

- a. Find a basis for Col(*A*).
- b. Find a basis for Row(A).
- c. Find a basis for Nul(*A*).
- d. State the dimension of $Nul(A^T)$.
- e. Select the answer which correctly completes the following sentence.

The column space of A is ______. (empty / a point / a line / a plane / \mathbb{R}^3 / \mathbb{R}^4).

Question 8. — Let A be an $m \times n$ matrix with n > m.

- a. Explain why $A\mathbf{x} = \mathbf{0}$ has non-trivial solutions. b. What is the size of $A^T A$?
- c. Explain why A^TA cannot be invertible.

Question 9. — Let $\mathcal{H} = \{A \in M_{2 \times 2} : A^2 = A^T + A\}.$

a. For which c is $\begin{pmatrix} 1 & c \\ c & 1 \end{pmatrix} \in \mathcal{H}$? b. Show that \mathcal{H} is not a subspace of $M_{2\times 2}$.

Question 10. — Find a basis of $\mathcal{V} = \{p \in \mathbb{P}_3 : p(1) = p(2)\}$

Question 11. — Given each of the following matrices, indicate whether its columns are linearly dependent or linearly independent.

- a. A 4×5 matrix with a pivot in each row. b. The product of two elementary matrices.
- c. The standard matrix of an injective linear transformation.

Question 12. — Given that A, B, C are $n \times n$ matrices,

det(A) = 2, det(AB) = 6, det(2A) = 32 and dim Nul(AC) = 1,

find each of the following. a. $\det(A^5A^T)$ b. $\det(B^{-1})$ c. n d. $\det(-A)$ e. $\det(BC)$ f. $\operatorname{rank}(AB)$

Question 13. — Find an LU factorization of $\begin{pmatrix} 3 & 4 & 1 \\ 9 & 11 & 5 \\ -6 & 13 & 8 \end{pmatrix}$

Question 14. — You are given the lines $\ell_1 = \mathbf{p}_1 + \operatorname{Span}\{\mathbf{v}_1\}$ and $\ell_2 = \mathbf{p}_2 + \operatorname{Span}\{\mathbf{v}_2\}$, where

$$\mathbf{p}_1 = \begin{pmatrix} 0 \\ -4 \\ -2 \end{pmatrix}, \quad \mathbf{p}_2 = \begin{pmatrix} 1 \\ 0 \\ 5 \end{pmatrix}, \quad \mathbf{v}_1 = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} \quad \text{and} \quad \mathbf{v}_2 = \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix}.$$

- a. Find the point of intersection of ℓ_1 and ℓ_2 .
- b. Find the cosine of the angle ϑ between ℓ_1 and ℓ_2 .
- c. Is the angle ϑ between 0 and $\frac{1}{3}\pi$?

Question 15. — Find the point on the line $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ + Span $\left\{ \begin{pmatrix} -3 \\ 2 \\ 1 \end{pmatrix} \right\}$ which is nearest to (-9,15,-1).

Question 16. — Find the area of the triangle with vertices A(4,2,1), B(3,1,5) and C(2,3,6).

Question 17. — Find an equation of the line which contains the origin and is parallel to the planes defined by x + v + z = 1 and 2x - v + z = 3.

Question 18. — Let $R: \mathbb{R}^2 \to \mathbb{R}^2$ be the reflection across the v-axis and let $S: \mathbb{R}^2 \to \mathbb{R}^2$ be the vertical shear which maps $e_1 + 2e_2$ to $e_1 - 5e_2$.

- a. Find the standard matrix of *R*.
- b. Find the standard matrix of *S*.
- c. Find the standard matrix of $S^{-1} \circ R$.

Question 19. Let Q be a solid object with volume 7, and let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be defined by $T(\mathbf{x}) = A\mathbf{x}$, where

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 4 & k & 0 \\ 2 & 5 & 2 \end{pmatrix}.$$

Find all values of k, if any, so that the volume of T(Q) is 35

Question 20. — Complete each sentence with **must**, **might** or **cannot**.

- a. Let A be a square matrix. If $A\mathbf{x} = A\mathbf{y}$ for distinct \mathbf{x}, \mathbf{y} , then A ______ be invertible.
- b. Let T be a linear transformation with standard matrix A. The kernel of T ______equal the null space of A and the range of T ______ equal the column space of A.
 - c. If w is in Span $\{u, v\}$ then w _____ be in $\{u, v\}$.
- d. Let A be a non-zero, non-invertible 3×3 matrix. If the column space of A does not form a line, then the null space of A _____ form a line.

Question 21. — Let $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ be such that $\|\mathbf{u}\| = 3$, \mathbf{v} is a unit vector, and $\mathbf{u} + 2\mathbf{v}$ is orthogonal to $\mathbf{u} + 3\mathbf{v}$. Find $\mathbf{u} \cdot \mathbf{v}$ and $||\mathbf{u} + \mathbf{v}||$.

Ouestion 22. — Prove that if $\{u, v\}$ is linearly independent and $w \notin \text{Span}\{u, v\}$, then $\{u, v, w\}$ is linearly independent.

Solution to Question 1. — a. Reducing $(A \ b) = (a_1 \ a_2 \ a_3 \ a_4 \ b)$ gives

$$(A \mathbf{b}) \sim \begin{pmatrix} 2 & -4 & 2 & 2 & 0 \\ 0 & -1 & -1 & -1 & -9 \\ 0 & 1 & 1 & -1 & -1 \end{pmatrix} \sim \begin{pmatrix} 2 & -4 & 2 & 2 & 0 \\ 0 & -1 & -1 & -1 & -9 \\ 0 & 0 & 0 & -2 & -10 \end{pmatrix}$$

$$\sim \begin{pmatrix} 2 & -4 & 2 & 0 & -10 \\ 0 & -1 & -1 & 0 & -4 \\ 0 & 0 & 0 & 1 & 5 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 3 & 0 & 3 \\ 0 & 1 & 1 & 0 & 4 \\ 0 & 0 & 0 & 1 & 5 \end{pmatrix}.$$

Thus, the general solution of $A\mathbf{x} = \mathbf{b}$ is $\mathbf{p} + \mathrm{Span}\{\mathbf{u}\}$, where

$$\mathbf{p} = \begin{pmatrix} 3 \\ 4 \\ 0 \\ 5 \end{pmatrix} \quad \text{and} \quad \mathbf{u} = \begin{pmatrix} -3 \\ -1 \\ 1 \\ 0 \end{pmatrix}.$$

b. Solving 3-3x=4-x gives $x=-\frac{1}{2}$, so

$$\mathbf{p} - \frac{1}{2}\mathbf{u} = \frac{1}{2} \begin{pmatrix} 9\\9\\-1\\10 \end{pmatrix}$$

is a solution of Ax = b whose first and second entries are equal.

- c. From the reduced echelon form of A, it follows that $\mathbf{a}_3 = 3\mathbf{a}_1 + \mathbf{a}_2$.
- d. Since A has three pivot columns, its columns span \mathbb{R}^3 ; therefore, the statement is false.
- e. The matrix whose columns are (in order) the last three columns of A is row equivalent to

$$\begin{pmatrix} 0 & 3 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \sim I_3,$$

so the statement in question is true.

Solution to Question 2. — If $y = c + bx + ax^2$ then $\frac{dy}{dx} = b + 2ax$, so the unique solution of the equation

$$\begin{pmatrix} 1 & 2 & 4 \\ 1 & 3 & 9 \\ 0 & 1 & 4 \end{pmatrix} \begin{pmatrix} c \\ b \\ a \end{pmatrix} = \begin{pmatrix} -6 \\ 27 \\ 12 \end{pmatrix}$$

yields the coefficients of 1, x and x^2 in y.

Solution to Question 3. — a. The matrix of cofactors of *A* is

$$C = \begin{pmatrix} 23 & -16 & -2 \\ -\frac{11}{2} & 4 & \frac{1}{2} \\ -5 & \frac{7}{2} & \frac{1}{2} \end{pmatrix},$$

and the determinant of A is $\frac{1}{2}$ (this can be seen by adding 8 times the second column to the third column and then expanding; but it is also given), so

$$A^{-1} = 2\operatorname{adj}(A) = 2 \begin{pmatrix} 23 & -\frac{11}{2} & -5 \\ -16 & 4 & \frac{7}{2} \\ -2 & \frac{1}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} 46 & -11 & -10 \\ -32 & 8 & 7 \\ -4 & 1 & 1 \end{pmatrix}.$$

b. The adjoint of A is displayed in the solution to part a.

Solution to Question 4. — Expanding along the bottom row, and then applying the multilinear and alternating character of the determinant, gives

$$\begin{vmatrix} 3g + a & 3h + b & 2 & 3i + c \\ d + 2a & e + 2b & 3 & f + 2c \\ a & b & 4 & c \\ 0 & 0 & 5 & 0 \end{vmatrix} = -5 \begin{vmatrix} 3g & 3h & 3i \\ d & e & f \\ a & b & c \end{vmatrix} = 15 \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = 150.$$

Solution to Question 5. — The equation is equivalent to $(X+I)^{-1}=2B^{-1}A$, or $X=(2B^{-1}A)^{-1}-I$.

Solution to Question 6. — a. The equation

$$\begin{pmatrix} 0 & A \\ I & 0 \end{pmatrix} \begin{pmatrix} W & X \\ Y & Z \end{pmatrix} = I,$$

is equivalent to the equations AY = I, W = 0, AZ = 0, X = I. Thus, since B is square, it follows that

$$B^{-1} = \begin{pmatrix} 0 & I \\ A^{-1} & 0 \end{pmatrix}.$$

b. Since

$$B^2 = \begin{pmatrix} 0 & A \\ I & 0 \end{pmatrix} \begin{pmatrix} 0 & A \\ I & 0 \end{pmatrix} = \begin{pmatrix} A & 0 \\ 0 & A \end{pmatrix}, \quad \text{it follows that} \quad B^4 = \begin{pmatrix} A^2 & 0 \\ 0 & A^2 \end{pmatrix}.$$

c. From parts a and b (and induction) it follows that

$$B^{2k} = \begin{pmatrix} A^k & 0 \\ 0 & A^k \end{pmatrix}, \quad \text{and} \quad B^{2k+1} = \begin{pmatrix} A^k & 0 \\ 0 & A^k \end{pmatrix} \begin{pmatrix} 0 & A \\ I & 0 \end{pmatrix} = \begin{pmatrix} 0 & A^{k+1} \\ A^k & 0 \end{pmatrix},$$

for any integer k. Therefore, the smallest positive integer m for which $B^m = I$ is 10.

Solution to Question 7. — Write $A = (\mathbf{a}_1 \ \mathbf{a}_2 \ \mathbf{a}_3 \ \mathbf{a}_4)$ and $R^T = (\mathbf{r} \ \mathbf{r}' \ \mathbf{0})$.

- a. A basis for Col(A) is $\{a_1, a_3\}$.
- b. A basis for Row(A) is $\{\mathbf{r}, \mathbf{r}'\}$.
- c. A basis for Nul(A) is

$$\left\{ \begin{pmatrix} -2\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} -4\\0\\-3\\1 \end{pmatrix} \right\}$$

- d. The dimension of $Nul(A^T)$ is 3 rank(A) = 1.
- e. Since rank(A) = 2, the column space of A is a plane.

Solution to Question 8. — a. The dimension of Nul(A) is $n - rank(A) \ge n - m > 0$.

- b. The matrix $A^T A$ is an $n \times n$ matrix.
- c. $A^T A$ must be singular because dim $Nul(A^T A) \ge dim Nul(A) > 0$.

Solution to Question q. — a. Since

$$\begin{pmatrix} 1 & c \\ c & 1 \end{pmatrix} \begin{pmatrix} 1 & c \\ c & 1 \end{pmatrix} = \begin{pmatrix} 1 + c^2 & 2c \\ 2c & 1 + c^2 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} 1 & c \\ c & 1 \end{pmatrix} + \begin{pmatrix} 1 & c \\ c & 1 \end{pmatrix} = \begin{pmatrix} 2 & 2c \\ 2c & 2 \end{pmatrix},$$

it follows that the given matrix belongs to \mathcal{H} if, and only if, $c = \pm 1$.

b. Since $\alpha I_2 \in \mathcal{H}$ if, and only if, α is 0 or 2, it follows that \mathcal{H} is neither closed under addition, nor closed under scalar multiplication. Thus, \mathcal{H} is not a subspace of $M_{2\times 2}$.

Sample examinations (solutions) Linear Algebra I (201-NYC-05) Winter 2019

Solution to Question 11. — a. A 4×5 matrix has at least one non-pivot column, so its columns are linearly dependent.

- b. Any product of elementary matrices is invertible, and thus has linearly independent columns.
- c. Every column of any matrix of an injective linear transformation is a pivot column, so the columns of such a matrix are linearly independent.

Solution to Question 12. — a. $det(A^5A^T) = (det A)^6 = 64$.

- b. $\det(B^{-1}) = (\det A)/(\det AB) = \frac{1}{3}$.
- c. $32 = det(2A) = 2^n det(A) = 2^{n+1}$, so n = 4.
- d. $det(-A) = (-1)^4 det(A) = 2$.
- e. Since A and B are invertible, $\dim \text{Nul}(BC) = \dim \text{Nul}(AC) = 1$, so $\det(BC) = 0$.
- f. Since A and B are invertible 4×4 matrices, rank(AB) = rank(A) = rank(B) = 4.

Solution to Question 13. — An LU factorization of the given matrix is

$$\begin{pmatrix} 3 & 4 & 1 \\ 9 & 11 & 5 \\ -6 & 13 & 8 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ -2 & -21 & 1 \end{pmatrix} \begin{pmatrix} 3 & 4 & 1 \\ 0 & -1 & 2 \\ 0 & 0 & 52 \end{pmatrix},$$

via the rough work

$$\begin{array}{ccc} -1 & 2 \\ 21 & 10 \end{array}$$
 \rightarrow 52.

Solution to Question 14. — a. Reducing

$$\begin{pmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{p}_2 - \mathbf{p}_1 \end{pmatrix} = \begin{pmatrix} 1 & -2 & 1 \\ 1 & 1 & 4 \\ 2 & 1 & 7 \end{pmatrix} \sim \begin{pmatrix} 1 & -2 & 1 \\ 0 & 3 & 3 \\ 0 & 5 & 5 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix},$$

gives

$$\mathbf{p}_1 + 3\mathbf{v}_1 = \mathbf{p}_2 - \mathbf{v}_2 = \begin{pmatrix} 3 \\ -1 \\ 4 \end{pmatrix}.$$

b. The cosine of the (acute) angle ϑ between ℓ_1 and ℓ_2 is

$$\cos(\vartheta) = \frac{\left|\mathbf{v}_1^T \mathbf{v}_2\right|}{\left\|\mathbf{v}_1\right\| \left\|\mathbf{v}_2\right\|} = \frac{1}{6}.$$

c. Since $0 < \cos(\vartheta) < \frac{1}{2} = \cos(\frac{1}{3}\pi)$, it follows that $\frac{1}{3}\pi < \vartheta < \frac{1}{2}\pi$. So ϑ is not between 0 and $\frac{1}{3}\pi$.

Solution to Question 15. - Let

$$\mathbf{p} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad \mathbf{u} = \begin{pmatrix} -9 \\ 15 \\ -1 \end{pmatrix} - \mathbf{p} = \begin{pmatrix} -10 \\ 14 \\ -2 \end{pmatrix} \quad \text{and} \quad \mathbf{v} = \begin{pmatrix} -3 \\ 2 \\ 1 \end{pmatrix}.$$

The point on the given line which is nearest to (-9, 15, -1) is

$$\mathbf{p} + \operatorname{proj}_{\mathbf{v}} \mathbf{u} = \mathbf{p} + \frac{\mathbf{v}^T \mathbf{u}}{\mathbf{v}^T \mathbf{v}} \mathbf{v} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + \frac{56}{14} \begin{pmatrix} -3 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} -11 \\ 9 \\ 5 \end{pmatrix}.$$

Solution to Question 16. — The area of the triangle is

$$\frac{1}{2} \left\| \overrightarrow{AB} \times \overrightarrow{AC} \right\| = \frac{1}{2} \left\| \begin{pmatrix} -1 \\ -1 \\ 4 \end{pmatrix} \times \begin{pmatrix} -2 \\ 1 \\ 5 \end{pmatrix} \right\| = \frac{1}{2} \left\| \begin{pmatrix} -9 \\ -3 \\ -3 \end{pmatrix} \right\| = \frac{3}{2} \left\| \begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix} \right\| = \frac{3}{2} \sqrt{11}.$$

Solution to Question 17. — The line is Span{**u**}, where

$$\mathbf{u} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \times \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ -3 \end{pmatrix}.$$

Solution to Question 18. — a. Since $R: e_1 \rightarrow -e_1$ and $R: e_2 \rightarrow e_2$, the standard matrix of R is

$$A = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}.$$

b. Since $S: \mathbf{e}_2 \rightarrow \mathbf{e}_2$ and $S: \mathbf{e}_1 + 2\mathbf{e}_2 \rightarrow \mathbf{e}_1 - 5\mathbf{e}_2$, it follows that $S: \mathbf{e}_1 \rightarrow \mathbf{e}_1 - 7\mathbf{e}_2$, and that

$$B = \begin{pmatrix} 1 & 0 \\ -7 & 1 \end{pmatrix}$$

is the standard matrix of S

c. The standard matrix of $S^{-1} \circ R$ is

$$B^{-1}A = \begin{pmatrix} 1 & 0 \\ 7 & 1 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ -7 & 1 \end{pmatrix}.$$

Solution to Question 19. — The volume of T(Q) is $|\det(A)| = 2|k|$ times the volume of Q, or 14|k|. Thus, the volume of T(Q) is 35 if, and only if $k = \pm \frac{5}{2}$.

Solution to Question 20. — a. Let A be a square matrix. If $A\mathbf{x} = A\mathbf{y}$ for distinct \mathbf{x} , \mathbf{y} , then A cannot be invertible.

- b. Let T be a linear transformation with standard matrix A. The kernel of T **must** equal the null space of A and the range of T **must** equal the column space of A.
 - c. If w is in Span $\{u, v\}$ then w might be in $\{u, v\}$.
- d. Let A be a non-zero, non-invertible 3×3 matrix. If the column space of A does not form a line, then the null space of A must form a line.

Solution to Question 21. — First, notice that $0 = (\mathbf{u} + 2\mathbf{v}) \cdot (\mathbf{u} + 3\mathbf{v}) = \mathbf{u} \cdot \mathbf{u} + 5\mathbf{u} \cdot \mathbf{v} + 6\mathbf{v} \cdot \mathbf{v} = 5\mathbf{u} \cdot \mathbf{v} + 15$; thus $\mathbf{u} \cdot \mathbf{v} = -3$, so the Cauchy inequality implies that $\mathbf{u} = -3\mathbf{v}$. Thus $\|\mathbf{u} + \mathbf{v}\| = \|-2\mathbf{v}\| = 2\|\mathbf{v}\| = 2$.

Solution to Question 22. — If $\alpha \mathbf{u} + \beta \mathbf{v} + \gamma \mathbf{w} = \mathbf{0}$ then $\gamma = 0$, for otherwise $\mathbf{w} \notin \text{Span}\{\mathbf{u}, \mathbf{v}\}$. So $\alpha \mathbf{u} + \beta \mathbf{v} = \mathbf{0}$, and thus $\alpha = \beta = 0$, since $\{\mathbf{u}, \mathbf{v}\}$ is linearly independent. This shows that the equation $\alpha \mathbf{u} + \beta \mathbf{v} + \gamma \mathbf{w} = \mathbf{0}$ implies that $\alpha = \beta = \gamma = 0$; *i.e.*, that $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is linearly independent.