Question $\mathbf{1}$. — Let $A = \begin{pmatrix} a_1 & a_2 & a_3 & a_4 & a_5 \end{pmatrix}$ be a 4×5 matrix and $\mathbf{b} \in \mathbb{R}^4$ be such that

$$
(A \tb) \sim \begin{pmatrix} 1 & 0 & 2 & 0 & -4 & 10 \\ 0 & 1 & 4 & 0 & 5 & 3 \\ 0 & 0 & 0 & 1 & -8 & 6 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}
$$

a. Write the general solution of $A**x** = **b**$ in parametric vector form. b. Circle the lists below which are bases of Col(*A*).

$$
\begin{aligned}\n\{a_3, a_5\} & \{a_1, a_2, a_4\} & \{a_1, a_2, a_3\} \\
\{a_1, 2a_2, 5a_5\} & \{a_3, 2a_3 + a_5\} & \{a_2, a_3, a_4\}\n\end{aligned}
$$

c. What is $\dim(\mathrm{Nul}(A^T))$?

d. What is rank
$$
(A^T)
$$
?
e. Given that $\mathbf{a}_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$, $\mathbf{a}_2 = \begin{pmatrix} 2 \\ 1 \\ -1 \\ 1 \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} 16 \\ 13 \\ 1 \\ 31 \end{pmatrix}$, compute \mathbf{a}_3 and \mathbf{a}_4 .

Question 2. — Let *A* = $(5 \t 5 \t 0)$ $\overline{}$ 0 0 1 0 1 3 Í $\begin{array}{c} \n\end{array}$. a. Find A^{-1} . b. Write A^{-1} as a product of elementary matrices.

Question 3. Let
$$
\mathbf{v}_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}
$$
, $\mathbf{v}_2 = \begin{pmatrix} 2 \\ 1 \\ k+2 \end{pmatrix}$, $\mathbf{v}_3 = \begin{pmatrix} 3 \\ k+3 \\ -6 \end{pmatrix}$, $\mathbf{v}_4 = \begin{pmatrix} 5 \\ 6 \\ 8 \end{pmatrix}$.

a. For which values of *k* is $\mathbf{v}_4 \in \text{Span}\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$?

b. For which values of *k* is ${v_1, v_2, v_3}$ linearly indepdnent?

Question 4. - Let
$$
A = \begin{pmatrix} 0 & 2 & 1 & 1 \\ -2 & 1 & 1 & 3 \\ 4 & 4 & 0 & 3 \\ 2 & 1 & -2 & 3 \end{pmatrix}
$$
, $\mathbf{b} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$ and $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}$.
Use Gauss's rule to solve the formula for a plane.

Use Cramer's rule to solve $A\mathbf{x} = \mathbf{b}$ for x_2 only.

Question 5. - Given
$$
3 \times 3
$$
 matrices *A* and *B* with det(*A*) = $\begin{vmatrix} a & b & c \\ p & q & r \\ x & y & z \end{vmatrix} = 5$
and det(*B*) = -6, evaluate each of the following.

.

a.
$$
\begin{vmatrix} 3x & 3y & 3z \\ -a & -b & -c \\ a+2p & b+2q & c+2r \end{vmatrix}
$$
 b. $det((2B)^{-1})$ c. $det(3B^{T}A)$ d. $rank(BA)$

Question 6. — Solve $(3A^TB^{-1})^T X(6BA)^{-1} = B^{-1}$ for *X*, given that *A* and *B* are invertible matrices of the same size.

Question 7. - Given
$$
B = \begin{pmatrix} x & y & -5 \\ y & z & 5 \\ 4 & 1 & 10 \end{pmatrix}
$$
 and $adj(B) = \begin{pmatrix} 5 & 15 & -5 \\ 40 & 50 & -5 \\ -6 & -11 & -1 \end{pmatrix}$,

Question 8. — Let \mathcal{L} be the line given by $\overline{1}$ $\overline{}$ 1 *h k* + 1 λ $\begin{array}{c} \hline \end{array}$ + *t* $\overline{1}$ $\overline{}$ *h* − 2 3 *k* Í $\begin{array}{c} \hline \end{array}$, and let $\mathscr P$ be

the plane defined by $3x + 2y + z = 5$. Find conditions on *h* and *k* so that:
a. \mathcal{L} is perpendicular to \mathcal{P} ; b. \mathcal{L} is contained in \mathcal{P} . a. $\mathscr L$ is perpendicular to $\mathscr P$;

Question 9. — Let $R: \mathbb{R}^2 \to \mathbb{R}^2$ denote the rotation about the origin by *π*, and let $T: \mathbb{R}^2 \to \mathbb{R}^2$ denote the vertical expanstion by a factor of 2. Compute the standard matrix of *T* ◦*R*.

Question 10. — Give the matrix of a shear $S: \mathbb{R}^2 \to \mathbb{R}^2$ so that the image of the triangle below is an isosceles triangle.

Question 11. — Consider the points *A*(2*,*1*,*0), *B*(2*,*4*,*4) and *C*(0*,*−2*,*6).

- a. Find a normal equation of the plane containing *A*, *B* and *C*.
- b. Find the area of triangle *ABC*.
- c. Find the cosine of the angle at the vertex *A* of triangle *ABC*.
- d. Find the distance between the point *C* and the line *AB*.

Question 12. — Let $W = \{p \in \mathbb{P}_3[x] : p(1) = 0 \text{ and } p'(1) = p(-1)\}.$ Find a basis of *W* .

Question $13.$ — Prove that $Nul(B) \subset Nul(AB)$, whenever *AB* is defined.

Question 14. — Let
$$
W = \left\{ \begin{pmatrix} a & c \\ b & d \end{pmatrix} \in M_{2 \times 2} : ad = b^2 - c^2 \right\}.
$$

- a. Give two matrices in *W* , neither of which is a multiple of the other.
- b. Is *W* closed under addition? Justify your answer.
- c. Is *W* closed under scalar multiplication? Justify your answer.

Question 15. — Consider the directed graph below.

- a. Find the adjacency matrix *M* of the graph.
- b. Compute M^2 and M^4 .
- c. How many walks of length 4 end at *P*5?
- d. How many closed walks of length 8 are there in total?

Question 16. — Let a and **b** be mutually orthogonal unit vectors in \mathbb{R}^3 , and let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear map defined by $T(\mathbf{x}) = (\mathbf{a} \cdot \mathbf{x})\mathbf{b} + (\mathbf{b} \cdot \mathbf{x})\mathbf{a}$.

- a. Simplify $T(a)$ as much as possible.
- b. Simplify $T(a \times b)$ as much as possible.
- c. Is *T* injective (one-to-one)? Explain.
- a. Write the general solution of $A**x** = **b**$ in parametric vector form.
- b. Circle the lists below which are bases of Col(*A*).

$$
\{a_1, a_2, a_4\} \qquad \{a_1, a_2, a_4\} \qquad \{a_1, a_2, a_3\}
$$

$$
\{a_1, 2a_2, 5a_5\} \qquad \{a_3, 2a_3 + a_5\} \qquad \{a_2, a_3, a_4\}
$$

c. What is $\dim(\mathrm{Nul}(A^T))$? d. What is $\mathrm{rank}(A^T)$?

e. Given that
$$
\mathbf{a}_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}
$$
, $\mathbf{a}_2 = \begin{pmatrix} 2 \\ 1 \\ -1 \\ 1 \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} 16 \\ 13 \\ 1 \\ 31 \end{pmatrix}$, compute \mathbf{a}_3 and \mathbf{a}_4 .

Solution to Question 1. — a. A particular solution of the equation is

$$
\mathbf{p} = \begin{pmatrix} 10 \\ 3 \\ 0 \\ 6 \\ 0 \end{pmatrix}, \text{ and Null}(A) \text{ is generated by } \mathbf{u} = \begin{pmatrix} -2 \\ -4 \\ 1 \\ 0 \\ 0 \end{pmatrix} \text{ and } \mathbf{v} = \begin{pmatrix} 4 \\ -5 \\ 0 \\ 8 \\ 1 \end{pmatrix},
$$

so the general solution of $A\mathbf{x} = \mathbf{b}$ is $\mathbf{p} + \text{Span}\{\mathbf{u}, \mathbf{v}\}.$

b. The column space of *A* is three dimensional, so any three linearly independent columns of *A* (or any three linearly independent vectors in the column space for that matter) will form a basis of Col(*A*). Thus,

$$
\{a_1, a_2, a_4\}, \quad \{a_1, 2a_2, 5a_5\}, \quad , \quad \{a_2, a_3, a_4\}
$$

are all bases of Col(*A*).

c. The column space of A is a 3-dimensional subspace of \mathbb{R}^4 , so the dimension of the null space of A^T is $4-3=1$.

- d. The rank of A^T is equal to the rank of A , which is 3.
- e. From the reduced echelon form of *A*, it follows that

$$
\mathbf{a}_3 = 2\mathbf{a}_1 + 4\mathbf{a}_2 = 2 \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} + 4 \begin{pmatrix} 2 \\ 1 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 10 \\ 6 \\ -2 \\ 6 \end{pmatrix}
$$

and $10a_1 + 3a_2 + 6a_4 = b$, so

$$
6\mathbf{a}_4 = \mathbf{b} - 10\mathbf{a}_1 - 3\mathbf{a}_2 = \begin{pmatrix} 16 \\ 13 \\ 1 \\ 31 \end{pmatrix} - 10 \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} - 3 \begin{pmatrix} 2 \\ 1 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ -6 \\ 18 \end{pmatrix}, \text{ or } \mathbf{a}_4 = \begin{pmatrix} 0 \\ 0 \\ -1 \\ 3 \end{pmatrix}
$$

Solution to Question 2. — a. Applying the elementary row operations R_2 ↔ R_3 , R_2 ← R_2 – 3 R_3 , R_1 ← R_1 – 5 R_2 and R_1 ← $\frac{1}{5}R_1$ to *A*

$$
A \sim \begin{pmatrix} 5 & 5 & 0 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 5 & 5 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 5 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \sim I_3, \text{ so}
$$

$$
I_3\sim\begin{pmatrix}1&0&0\\0&0&1\\0&1&0\end{pmatrix}\sim\begin{pmatrix}1&0&0\\0&-3&1\\0&1&0\end{pmatrix}\sim\begin{pmatrix}1&15&-5\\0&-3&1\\0&1&0\end{pmatrix}\sim\begin{pmatrix}\frac{1}{5}&3&-1\\0&-3&1\\0&1&0\end{pmatrix}=A^{-1}.
$$

b. Writing E_1 , E_2 , E_3 , E_4 for the elementary matrices associated to the elemntary row operations used to reduce *A* to *I* gives

$$
A^{-1} = E_4 E_3 E_2 E_1 = \begin{pmatrix} \frac{1}{5} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & -5 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -3 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}.
$$

Solution to Question 3. — a. Reducing

$$
(\mathbf{v}_1 \ \mathbf{v}_2 \ \mathbf{v}_3 \ \mathbf{v}_4) \sim \begin{pmatrix} 1 & 2 & 3 & 5 \\ 0 & -1 & k & 1 \\ 0 & k & -9 & 3 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 3 & 5 \\ 0 & -1 & k & 1 \\ 0 & 0 & k^2 - 9 & k + 3 \end{pmatrix}
$$

gives $\mathbf{v}_4 \in \text{Span}\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ if, and only if, $k \neq 3$.

b. If $k \neq \pm 3$ then \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 are linearly indpendent.

Solution to Question 4. — First of all

$$
det(A) = \begin{vmatrix} 0 & 0 & 0 & 1 \\ -2 & -5 & -2 & 3 \\ 4 & -2 & -3 & 3 \\ 2 & -5 & -5 & 3 \end{vmatrix} = - \begin{vmatrix} -2 & -5 & -2 \\ 0 & -12 & -7 \\ 0 & -10 & -7 \end{vmatrix} = 28 \begin{vmatrix} 6 & 1 \\ 5 & 1 \end{vmatrix} = 28,
$$

and

$$
\det A_2(\mathbf{b}) = \begin{vmatrix} 0 & 0 & 1 & 1 \\ -2 & 1 & 1 & 3 \\ 4 & 0 & 0 & 3 \\ 2 & 0 & -2 & 3 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 1 \\ 4 & -3 & 3 \\ 2 & -5 & 3 \end{vmatrix} = -2 \begin{vmatrix} 2 & 3 \\ 1 & 5 \end{vmatrix} = -14,
$$

so Cramer's rule gives $x_2 = \frac{\det A_2(\mathbf{b})}{\det A_2(\mathbf{b})}$ $\frac{\operatorname{et} A_2(\mathbf{D})}{\operatorname{det}(A)} = -\frac{1}{2}.$

Solution to Question 5. — a. Direct calculation gives

$$
\begin{vmatrix} 3x & 3y & 3z \\ -a & -b & -c \\ a+2p & b+2q & c+2r \end{vmatrix} = \begin{vmatrix} 0 & 0 & 3 \\ -1 & 0 & 0 \\ 1 & 2 & 0 \end{vmatrix} \begin{vmatrix} a & b & c \\ p & q & r \\ x & y & z \end{vmatrix} = -6 \cdot 5 = -30.
$$

b. Since *B* is a 3 × 3 matrix, $det((2B)^{-1})(det(2B))^{-1} = 2^{-3} \cdot (-\frac{1}{6}) = -\frac{1}{48}$.

- c. Since *A* and *B* are 3 × 3 matrices, det(3*B*^{*T*} *A*) = $3^3 \cdot (-6) \cdot 5 = -810$.
- d. Since *A* and *B* are non-singular 3 × 3 matrices, the rank of *BA* is 3.

Solution to Question 6. — Direct multiplication gives

 $X = \left((3A^T B^{-1})^T \right)^{-1} B^{-1} (6BA) = \frac{1}{3} A^{-1} B^T B^{-1} 6BA = 2A^{-1} B^T A.$

 $Solution$ to Question 7. $-$ Write b'_{ij} for the entries of adj(*B*) and B_{ij} for the matrix obtained by deleting row *i* and column *j* of *B*. Then

$$
50 = b'_{22} = \det(B_{22}) = \begin{vmatrix} x & -5 \\ 4 & 10 \end{vmatrix} = 10(x+2) \quad \text{so} \quad x = 3,
$$

$$
15 = b'_{12} = -\det(B_{21}) = -\begin{vmatrix} y & -5 \\ 1 & 10 \end{vmatrix} = -5(2y+1) \quad \text{so} \quad y = -2
$$

and

.

$$
5 = b'_{11} = \det(B_1 1) = \begin{vmatrix} z & 5 \\ 1 & 10 \end{vmatrix} = 10z - 5
$$
 so $z = 1$.

Solution to Question 8. — a. $\mathscr L$ is perpendicular to $\mathscr P$ precisely when there is a scalar *α* such that

$$
\binom{h-2}{3} = \alpha \binom{3}{2}, \quad i.e., \quad \alpha = \frac{2}{3}, \quad \text{so} \quad \frac{2}{3}(h-2) = 3 \quad \text{and} \quad \frac{2}{3}k = 1;
$$

thus, $h = \frac{13}{2}$ and $k = \frac{3}{2}$.

b. \mathscr{L} is contained in \mathscr{P} precisely when

$$
0 = \left(3 \ 2 \ 1\right) \begin{pmatrix} h-2 \\ 3 \\ k \end{pmatrix} = 3h + k \quad \text{and} \quad 5 = \left(3 \ 2 \ 1\right) \begin{pmatrix} 1 \\ h \\ k+1 \end{pmatrix} = 2h + k + 4.
$$

The first equation gives $k = -3h$, and the second equation then becomes −*h* + 4 = 5, so *h* = −1 and *k* = 3.

Solution to Question 9. — The standard matrix of a rotation about the origin by π is $[R] = -I$ and the standard matrix of a vertical expansion by a factor of 2 is $[T] = (e_1 \ 2e_2)$, so the standard matrix of the composite $T \circ R$ is

$$
[T][R] = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -2 \end{pmatrix}
$$

.

Solution to Question 10. — One possibility is the horizontal shear which maps the segment joining (−4*,*2) and (0*,*2) to the segment joining (−2*,*2) and (2*,*2).

.

In this case the side of the image joining (−2*,*2) to (0*,*0) has the same length as the side joining $(2, 2)$ to $(0, 0)$; namely, $2\sqrt{2}$. The standard matrix of this shear satisfies

$$
\begin{pmatrix} -2 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \begin{pmatrix} -4 \\ 2 \end{pmatrix} = \begin{pmatrix} -4 + 2a \\ 2 \end{pmatrix}, \text{ so } a = 1. \text{ Thus, } \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}
$$

is the standard matrix of the shear.

Another possibility is the vertical shear which maps (−4*,*2) to (−4*,*1).

In this case the side of the image joining (−4*,*1) to (0*,*2) has the same length as the side joining (−4*,*1) to (0*,*0); namely, [√] 17. The standard matrix of this shear satisfies

$$
\begin{pmatrix} -4 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ a & 1 \end{pmatrix} \begin{pmatrix} -4 \\ 2 \end{pmatrix} = \begin{pmatrix} -4 \\ -4a + 2 \end{pmatrix}, \text{ so } a = \frac{1}{4}. \text{ Thus, } \begin{pmatrix} 1 & 0 \\ \frac{1}{4} & 1 \end{pmatrix}
$$

is the standard matrix of the shear.

Solution to Question 11. — Let

$$
\mathbf{u} = \overrightarrow{AB} = \begin{pmatrix} 0 \\ 3 \\ 4 \end{pmatrix}, \ \mathbf{v} = \overrightarrow{AC} = \begin{pmatrix} -2 \\ -3 \\ 6 \end{pmatrix} \text{ and } \mathbf{n} = \frac{1}{2}\mathbf{u} \times \mathbf{v} = \frac{1}{2} \begin{pmatrix} 0 \\ 3 \\ 4 \end{pmatrix} \times \begin{pmatrix} -2 \\ -3 \\ 6 \end{pmatrix} = \begin{pmatrix} 15 \\ -4 \\ 3 \end{pmatrix}.
$$

a. The plane containing *A*, *B* and *C* is defined by the normal equation $\mathbf{n}^T \mathbf{x} = \mathbf{n}^T \mathbf{a}$, or $15x_1 - 4x_2 + 3x_3 = 26$.

b. The area of triangle *ABC* is

$$
\frac{1}{2}|\mathbf{u} \times \mathbf{v}| = |\mathbf{n}| = \sqrt{225 + 16 + 9} = \sqrt{250} = 5\sqrt{10}.
$$

c. The cosine of the angle at the vertex *A* of triangle *ABC* is

$$
\frac{\mathbf{u}^T \mathbf{v}}{|\mathbf{u}||\mathbf{v}|} = \frac{15}{5 \cdot 7} = \frac{3}{7}.
$$

d. The distance between *C* and the line *AB* is equal to the area of the parallelogram formed by **u** and **v** divided by the length of **u**, which is

$$
\frac{|\mathbf{u} \times \mathbf{v}|}{|\mathbf{u}|} = \frac{2 \cdot 5\sqrt{10}}{5} = 2\sqrt{10}.
$$

Solution to Question 12. — The subspace *W* of $\mathbb{P}_3[x]$ is the kernel of the linear map $p \rightsquigarrow \begin{pmatrix} p(1) \\ p(1) \end{pmatrix}$ $p(1)$
p(−1)−*p*'(1). The standard matrix (that is, relative to the bases $1, x, x^2, x^3$ of $\mathbb{P}_3[x]$ and $\mathbf{e}_1, \mathbf{e}_2$ of \mathbb{R}^2) of this linear map is

$$
A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & -2 & -1 & -4 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & \frac{1}{3} & -\frac{2}{3} \\ 0 & 1 & \frac{2}{3} & \frac{5}{3} \end{pmatrix}, \text{ so } \begin{pmatrix} -1 \\ -2 \\ 3 \\ 0 \end{pmatrix} \sim \begin{pmatrix} 2 \\ -5 \\ 0 \\ 3 \end{pmatrix}
$$

generate the null space *A*, and $-1 - 2x + 3x^2$, $2 - 5x + 3x^3$ is a basis of *W*.

Solution to Question $13.$ — If $x \in Null(B)$ then $Bx = 0$, so $ABx = A0 = 0$, so $\mathbf{x} \in \text{Nul}(AB)$. Therefore, $\text{Nul}(B) \subset \text{Nul}(AB)$.

Solution to Question 14. — a. Let

$$
A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix};
$$

then in each case $ad = 0$ (1 · 0 in *A* and 0 · 1 in *B*) and $b^2 - c^2 = 1^2 - 1^2 = 0$, so $A, B \in W$, neither of which is a scalar multiple of the other.

b. The matrices *A* and *B* from part a belong to *W* , but

$$
A + B = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \notin W, \quad \text{since} \quad 1 \cdot 1 \neq 2^2 - 2^2.
$$

Therefore, *W* is not closed under addition.

c. If
$$
\alpha \in \mathbb{R}
$$
 and

$$
M = \begin{pmatrix} a & c \\ b & d \end{pmatrix} \in W, \quad \text{then} \quad \alpha M = \begin{pmatrix} \alpha a & \alpha c \\ \alpha b & \alpha d \end{pmatrix} \in W,
$$

since $(\alpha a)(\alpha d) = \alpha^2 ad = \alpha^2(b^2 - c^2) = (\alpha b)^2 - (\alpha c)^2$. Therefore, *W* is closed under scalar multiplication.

Solution to Question 15. — a. The adjacency matrix of the graph is

$$
M = \begin{pmatrix} 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}
$$

b. Direct calculations give

$$
M^{2} = \begin{pmatrix} 0 & 1 & 1 & 1 & 2 \\ 0 & 1 & 0 & 1 & 2 \\ 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \text{ and } M^{4} = \begin{pmatrix} 0 & 1 & 1 & 4 & 5 \\ 0 & 1 & 0 & 2 & 4 \\ 0 & 0 & 1 & 4 & 2 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}
$$

c. The number of walks of length 4 which end at *P*5 is equal to the sum of the entries in column 5 of M^4 , which is $5 + 4 + 2 + 0 + 1 = 12$.

d. Since (by direct calculation)

$$
M^8 = \begin{pmatrix} 0 & 1 & 1 & 10 & 11 \\ 0 & 1 & 0 & 4 & 8 \\ 0 & 0 & 1 & 8 & 4 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix},
$$

the number of closed walks of length 8 is $0 + 1 + 1 + 1 + 1 = 4$ (= trace(M^8)).

Solution to Question 16. — a. Since a and b are mutually orthogonal unit vectors, $\mathbf{a}^T \mathbf{a} = \mathbf{b}^T \mathbf{b} = 1$ and $\mathbf{a}^T \mathbf{b} = \mathbf{b}^T \mathbf{a} = 0$, so

 $T(a) = (a^T a)b + (b^T a)a = 1b + 0a = b.$

b. Since $\mathbf{a} \times \mathbf{b}$ is orthogonal to both \mathbf{a} and \mathbf{b} , it follows that

$$
T(\mathbf{a} \times \mathbf{b}) = (\mathbf{a}^T(\mathbf{a} \times \mathbf{b}))\mathbf{b} + (\mathbf{b}^T(\mathbf{a} \times \mathbf{b}))\mathbf{a} = 0\mathbf{b} + 0\mathbf{a} = \mathbf{0}.
$$

c. Since **a**, **b** are mutually orthogonal unit vectors, $|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}||\mathbf{b}| = 1 \neq 0$, so $\mathbf{a} \times \mathbf{b} \neq \mathbf{0}$. But $T(\mathbf{a} \times \mathbf{b}) = \mathbf{0}$ by part b, so *T* is not injective.