Question 1. - Let $A=\left(\begin{array}{lllll}\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3} & \mathbf{a}_{4} & \mathbf{a}_{5}\end{array}\right)$ be the matrix

$$
A=\left(\begin{array}{ccccc}
2 & -6 & 3 & 1 & 2 \\
-3 & 9 & 4 & 5 & -5 \\
-1 & 3 & 7 & 6 & -3 \\
1 & -3 & 5 & 4 & 1
\end{array}\right) \sim\left(\begin{array}{ccccc}
1 & -3 & 0 & 0 & 2 \\
0 & 0 & 1 & 0 & -1 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

and let $\mathbf{b}=3 \mathbf{a}_{2}+\mathbf{a}_{3}-2 \mathbf{a}_{5}$.
a. Give a basis of the null space of A.
b. Find a particular vector \mathbf{p} for which $A \mathbf{p}=\mathbf{b}$.
c. Write the solution of $A \mathbf{x}=\mathbf{b}$ in parametric vector form.
d. Give a basis of the row space of A.
e. What is the dimension of the null space of A^{T} ?

Question 2. - Let $A=\left(\begin{array}{ccc}0 & 1 & 0 \\ 1 & 0 & 0 \\ -2 & 0 & 3\end{array}\right)$.
a. Find A^{-1}.
b. Use A^{-1} to solve the equation $Y A=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 4\end{array}\right)$ for Y.

Question 3. - Consider the linear system

$$
\begin{aligned}
& x_{1}+3 x_{2}+\quad 2 x_{3}=k+5 \\
& -x_{1}+(h-1) x_{2}+\left(h^{2}-6\right) x_{3}=k-1 \\
& 3 x_{1}+9 x_{2}+\left(h^{2}-h\right) x_{3}=k^{2}+3 k+11
\end{aligned}
$$

a. For which pairs h, k does the system have no solution?
b. For which pairs h, k does the system have a unique solution?
c. For which pairs h, k is the solution of the system a line?
d. For which pairs h, k is the solution of the system a plane?

Question 4. - Let $\mathbf{u}, \mathbf{v}, \mathbf{w}$ be linearly independent vectors. Find k so that the vectors

$$
\mathbf{u}+\mathbf{v}+\mathbf{w}, \quad \mathbf{u}+2 \mathbf{v}+k \mathbf{w} \quad \text { and } \quad-\mathbf{u}+\mathbf{v}+k \mathbf{w}
$$

are linearly dependent.
Question 5. - Find the quadratic polynomial whose graph contains the points $(1,1),(2,-9)$ and $(-1,-3)$.
Question 6. - a. Find the standard matrix of the linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ which first performs a vertical expansion by a factor of 4 , then reflects vectors in the line $x_{2}=-x_{1}$, and finally performs a horizontal shear which maps \mathbf{e}_{2} to $-3 \mathbf{e}_{1}+\mathbf{e}_{2}$.
b. Find the standard matrix of a linear transformation which maps the line $\binom{1}{-2}+t\binom{3}{4}$ onto a vertical line.
Question 7. - a. Solve the equation $X^{T} A+B=(C X)^{T}-B$ for X. b. Find X from part a if $A=\left(\begin{array}{ll}1 & 5 \\ 2 & 1\end{array}\right), B=\left(\begin{array}{cc}-3 & 5 \\ 3 & 1\end{array}\right)$ and $C=\left(\begin{array}{cc}-2 & 3 \\ 1 & 3\end{array}\right)$.

Question 8. - Let A be an $n \times n$ matrix such that $A^{2}=A$.
a. Find the possible values of $\operatorname{det}(A)$.
b. Show that if $\operatorname{det}(A) \neq 0$ then $A=I$.

Question 9. - Let A, B and C be 4×4 matrices such that $\operatorname{rank}(A)=2$, $\operatorname{det}(B)=-2$ and $\operatorname{det}(C)=3$. Find:
a. $\operatorname{det}(A)$;
b. $\operatorname{det}\left(-3 B^{3} C^{-2}\right)$;
c. $\operatorname{det}\left(A^{T} C^{-1}+(B A)^{T}\right)$.

Question 10. - Find a basis of $\left\{p(x) \in \mathbb{P}_{3}[x]: p(1)=p(2)\right.$ and $\left.p(3)=0\right\}$.
Question 11. - If A is a 8×7 matrix and the dimension of $\operatorname{Nul}\left(A^{T}\right)$ is 3 then the rank of A is \qquad and the dimension of $\operatorname{Nul}(A)$ is \qquad
Question 12. - Prove that if A and B are invertible $n \times n$ matrices and $(A B)^{2}=A^{2} B^{2}$ then $A B=B A$.
Question 13. - Let ℓ be the line given by $\left(\begin{array}{c}1 \\ -1 \\ 2\end{array}\right)+t\left(\begin{array}{c}3 \\ 2 \\ -4\end{array}\right)$ and let \wp be the
plane defined by $2 x_{1}+3 x_{2}+3 x_{3}=4$.
a. The line ℓ and the plane \wp are (circle the correct answer):

- parallel.
- perpendicular.
- neither parallel nor perpendicular.
b. Circle the correct statement:
- ℓ intersects \wp in exactly one point.
$-\ell$ does not intersect \wp.
$-\ell$ is contained in \wp.
Question 14. - Given the lines $\ell_{1}:\left(\begin{array}{c}3 \\ 1 \\ -2\end{array}\right)+t\left(\begin{array}{l}2 \\ 2 \\ 1\end{array}\right)$ and $\ell_{2}:\left(\begin{array}{c}7 \\ 2 \\ -1\end{array}\right)+t\left(\begin{array}{c}1 \\ -2 \\ 2\end{array}\right)$.
a. Find the point on ℓ_{1} which is closest to the origin.
b. Compute the distance between ℓ_{1} and ℓ_{2}.

Question 15. - Given $A(1,-1,2), B(2,1,3), C(4,0,4)$ and $D(-3,3,3)$.
a. Find the area of triangle $A B C$.
b. Find a normal equation of the plane which contains D and is parallel to the plane containing triangle $A B C$.
c. Compute the cosine of the angle A in triangle $A B C$.

Question 16. - Let P_{1} be the plane defined by $2 x_{1}-3 x_{2}+4 x_{3}=7$, let P_{2} be the plane defined by $x_{1}-2 x_{2}+x_{3}=3$, and let ℓ be the line of intersection of the planes P_{1} and P_{2}.
a. Find a parametric vector equation of ℓ.
b. Find a normal equation of the plane which is orthogonal to both P_{1} and P_{2} and contains the point $(1,1,1)$.
c. Give a parametric vector equation of the line which is parallel to both planes P_{1} and P_{2} and contains the point $(1,2,3)$.
d. Compute the distance between the P_{1} and the point $(1,1,1)$.

Question 17. - Use linear algebra to balance the chemical equation:

$$
\mathrm{C}_{4} \mathrm{H}_{10}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

Question 18. - Let $S=\left\{A \in M_{2 \times 2}: \operatorname{det}(A) \geqslant 0\right\}$.
a. Is S closed under addition? Justify.
b. Is S closed under scalar multiplication? Justify.

Question 19. - Let \mathbf{u} and \mathbf{v} be vectors in \mathbb{R}^{3} such that $\|\mathbf{u}\|=4,\|\mathbf{v}\|=\sqrt{ } 3$ and $\mathbf{u}^{T} \mathbf{v}=-6$.
a. What is the angle between \mathbf{u} and \mathbf{v} ? Give a simplified answer.
b. For which values of t, if any, is the angle between $\mathbf{u}+\mathbf{v}$ and $\mathbf{u}+t \mathbf{v}$ acute? (An acute angle is an angle between 0 and $\frac{1}{2} \pi$.)

Solution to Question 1. - a. $\left(\begin{array}{l}3 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{c}-2 \\ 0 \\ 1 \\ -1 \\ 1\end{array}\right)$ is a basis of the null space of A.
b. $\mathbf{p}=\left(\begin{array}{c}0 \\ 3 \\ 1 \\ 0 \\ -2\end{array}\right)$ is a particular solution of $A \mathbf{x}=\mathbf{b}$.
c. The solution of $A \mathbf{x}=\mathbf{b}$ is $\left(\begin{array}{c}0 \\ 3 \\ 1 \\ 0 \\ -2\end{array}\right)+s\left(\begin{array}{l}3 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right)+t\left(\begin{array}{c}-2 \\ 0 \\ 1 \\ -1 \\ 1\end{array}\right)$, where $s, t \in \mathbb{R}$.
d. $\left(\begin{array}{c}1 \\ -3 \\ 0 \\ 0 \\ 2\end{array}\right),\left(\begin{array}{c}0 \\ 0 \\ 1 \\ 0 \\ -1\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 1 \\ 1\end{array}\right)$ is a basis of $\operatorname{Row}(A)=\operatorname{Col}\left(A^{T}\right)$.
e. $\operatorname{dim}\left(\operatorname{Nul}\left(A^{T}\right)\right)=1$.

Solution to Question 2. - a. $A^{-1}=\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & \frac{2}{3} & \frac{1}{3}\end{array}\right)$
b. $Y=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 4\end{array}\right)\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & \frac{2}{3} & \frac{1}{3}\end{array}\right)=\left(\begin{array}{ccc}2 & 3 & 1 \\ 3 & \frac{14}{3} & \frac{4}{3}\end{array}\right)$.

Solution to Question 3. - The augmented matrix of the system is
$\left(\begin{array}{cccc}1 & 3 & 2 & k+5 \\ -1 & h-1 & h^{2}-6 & k-1 \\ 3 & 9 & h^{2}-h & k^{2}+3 k+11\end{array}\right) \sim\left(\begin{array}{cccc}1 & 3 & 2 & k+5 \\ 0 & h+2 & (h+2)(h-2) & 2(k+2) \\ 0 & 0 & (h+2)(h-3) & (k+2)(k-2)\end{array}\right)$.
a. There is no solution if $h=-2$ and $k \neq-2$, or else $h=3$ and $k \neq \pm 2$.
b. There is a unique solution if $h \neq-2,3$ and k is any real number.
c. The solution is a line if $h=3$ and $k= \pm 2$.
d . The solution is a plane if $h=-2$ and $k=-2$.
Solution to Question 4. $-\{\mathbf{u}+\mathbf{v}+\mathbf{w}, \mathbf{u}+2 \mathbf{v}+k \mathbf{w},-\mathbf{u}+\mathbf{v}+k \mathbf{w}\}=\{\mathbf{u}, \mathbf{v}, \mathbf{w}\} A$, where $A=\left(\begin{array}{ccc}1 & 1 & -1 \\ 1 & 2 & 1 \\ 1 & k & k\end{array}\right) \sim\left(\begin{array}{ccc}1 & 1 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 3-k\end{array}\right)$, so $k=3$.
Solution to Question 5. - Reducing $\left(\begin{array}{cccc}1 & 1 & 1 & 1 \\ 1 & 2 & 4 & -9 \\ 1 & -1 & 1 & -3\end{array}\right) \sim\left(\begin{array}{cccc}1 & 0 & 0 & 3 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & -4\end{array}\right)$
gives $p(x)=3+2 x-4 x^{2}$.
Solution to Question 6. - a. $\left(\begin{array}{cc}1 & -3 \\ 0 & 1\end{array}\right)\left(\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right)\left(\begin{array}{cc}1 & 0 \\ 0 & 4\end{array}\right)=\left(\begin{array}{cc}3 & -4 \\ -1 & 0\end{array}\right)$
b. $\mathbf{x} \leadsto\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right) \mathbf{x}$ maps the given line onto the line generated by $\binom{0}{1}$.

Solution to Question 7. - a. Transposing gives $A^{T} X+B^{T}=C X-B^{T}$, or $\left(C-A^{T}\right) X=2 B^{T}$, so $X=2\left(C-A^{T}\right)^{-1} B^{T}$.
b. $X=2\left[\left(\begin{array}{cc}-2 & 3 \\ 1 & 3\end{array}\right)-\left(\begin{array}{ll}1 & 5 \\ 2 & 1\end{array}\right)^{T}\right]^{-1}\left(\begin{array}{cc}-3 & 5 \\ 3 & 1\end{array}\right)^{T}=\left(\begin{array}{ll}11 & -5 \\ 27 & -9\end{array}\right)$.

Solution to Question 8. - a. $(\operatorname{det}(A))^{2}=\operatorname{det}(A)$, so $\operatorname{det}(A)=0$ or 1 .
b. $A(A-I)=0$, so either $A=I$ or else A is singular.

Solution to Question 9. - a. $\operatorname{det}(A)=0$ since the rank of A is <4.
b. $\operatorname{det}\left(-3 B^{3} C^{-2}\right)=(-3)^{4}(-2)^{3}(3)^{-2}=-72$.
c. $\operatorname{det}\left(A^{T} C^{-1}+(B A)^{T}\right)=\operatorname{det}\left(A^{T}\right) \operatorname{det}\left(C^{-1}+B^{T}\right)=0$, since A is singular.

Solution to Question 10. - The standard matrix of $p \leadsto\binom{p(3)}{p(2)-p(1)}$ is
$\left(\begin{array}{cccc}1 & 3 & 9 & 27 \\ 0 & 1 & 3 & 7\end{array}\right) \sim\left(\begin{array}{cccc}1 & 0 & 0 & 6 \\ 0 & 1 & 3 & 7\end{array}\right)$, whose null space is generated by $\left(\begin{array}{c}0 \\ -3 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{c}-6 \\ -7 \\ 0 \\ 1\end{array}\right)$; so $-3 x+x^{2},-6-7 x+x^{3}$ is a basis of the subspace in question.
Solution to Question 11. - If A is a 8×7 matrix and the dimension of $\operatorname{Nul}\left(A^{T}\right)$ is 3 then the rank of A is $5(=8-3)$ and the dimension of $\operatorname{Nul}(A)$ is $2(=7-5)$.
Solution to Question 12. - If $(A B)^{2}=A^{2} B^{2}$ and A, B are invertible then $A^{-1} A A B B B^{-1}=A^{-1} A B A B B^{-1}$, or $A B=B A$.

Solution to Question 13. - Write $\ell: \mathbf{p}+t \mathbf{v}$ and $\wp: \mathbf{n}^{T} \mathbf{x}=4$.
a. $\mathbf{n}^{T} \mathbf{v}=0$, so \mathbf{v} is orthogonal to \mathbf{n}; therefore, ℓ is parallel to \wp.
b. Since ℓ is parallel to \wp and $\mathbf{n}^{T} \mathbf{p}=5 \neq 4, \ell$ does not intersect \wp.

Solution to Question 14. - Write $\ell_{1}: \mathbf{p}_{1}+t \mathbf{v}_{1}$ and $\ell_{2}: \mathbf{p}_{2}+t \mathbf{v}_{2}$.
a. The point on ℓ_{1} which is closest to the origin is

$$
\mathbf{p}_{1}-\operatorname{proj}_{\mathbf{v}_{1}}\left(\mathbf{p}_{1}\right)=\left(\begin{array}{c}
3 \\
1 \\
-2
\end{array}\right)-\frac{2}{3}\left(\begin{array}{l}
2 \\
2 \\
1
\end{array}\right)=\frac{1}{3}\left(\begin{array}{c}
5 \\
-1 \\
-8
\end{array}\right)
$$

b. Since $\mathbf{n}=\frac{1}{3} \mathbf{v}_{1} \times \mathbf{v}_{2}=\left(\begin{array}{c}2 \\ -1 \\ -2\end{array}\right)$ is orthogonal to both lines, the distance is

$$
\left\|\operatorname{proj}_{\mathbf{n}}\left(\mathbf{p}_{2}-\mathbf{p}_{1}\right)\right\|=\frac{\left|\mathbf{n}^{T} \mathbf{p}_{2}-\mathbf{n}^{T} \mathbf{p}_{1}\right|}{\|\mathbf{n}\|}=\frac{|14-9|}{3}=\frac{5}{3}
$$

Solution to Question 15. - Let

$$
\mathbf{u}=\overrightarrow{A B}=\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right), \quad \mathbf{v}=\overrightarrow{A C}=\left(\begin{array}{l}
3 \\
1 \\
2
\end{array}\right) \quad \text { and } \quad \mathbf{n}=\mathbf{u} \times \mathbf{v}=\left(\begin{array}{c}
3 \\
1 \\
-5
\end{array}\right)
$$

a. The area of $\triangle A B C$ is $\frac{1}{2}\|\mathbf{n}\|=\frac{1}{2} \sqrt{ } 35$.
b. The plane which is parallel to $\triangle A B C$ and contains D is defined by the normal equation $\mathbf{n}^{T} \mathbf{x}=\mathbf{n}^{T} \overrightarrow{O D}$, or $3 x_{1}+x_{2}-5 x_{3}=-21$.
c. The cosine of $\angle B A C$ is $\frac{\mathbf{u}^{T} \mathbf{v}}{\|\mathbf{u}\|\|\mathbf{v}\|}=\frac{1}{6} \sqrt{ } 21$.

Solution to Question 16. - a. Reducing $\left(\begin{array}{llll}2 & -3 & 4 & 7 \\ 1 & -2 & 1 & 3\end{array}\right) \sim\left(\begin{array}{llll}1 & 0 & 5 & 5 \\ 0 & 1 & 2 & 1\end{array}\right)$ gives $\ell: \mathbf{p}+t \mathbf{v}$, where $\mathbf{p}=\left(\begin{array}{l}5 \\ 1 \\ 0\end{array}\right)$ and $\mathbf{v}=\left(\begin{array}{c}5 \\ 2 \\ -1\end{array}\right)$.
b. A normal equation of the plane is $\mathbf{v}^{T} \mathbf{x}=\mathbf{v}^{T}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$, or $5 x_{1}+2 x_{2}-x_{3}=6$, since \mathbf{v} is orthogonal to any plane which is orthogonal to both P_{1} and P_{2}.
c. The line is given by $\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)+t\left(\begin{array}{c}5 \\ 2 \\ -1\end{array}\right)$, since \mathbf{v} is parallel to both P_{1} and P_{2}.
d. The distance is $\frac{\left|\mathbf{n}_{1}^{T}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)-7\right|}{\left\|\mathbf{n}_{1}\right\|}=\frac{4}{29} \sqrt{ } 29$, where \mathbf{n}_{1} is the normal to P_{1}.

Solution to Question 17. - Reducing
C
H
O $\left(\begin{array}{cccc}4 & 0 & -1 & 0 \\ 10 & 0 & 0 & -2 \\ 0 & 2 & -2 & -1\end{array}\right) \sim\left(\begin{array}{cccc}1 & 0 & 0 & -\frac{1}{5} \\ 0 & 1 & 0 & -\frac{13}{10} \\ 0 & 0 & 1 & -\frac{4}{5}\end{array}\right)$ gives the generator $\left(\begin{array}{c}2 \\ 13 \\ 8 \\ 10\end{array}\right)$
of its null space. So $2 \mathrm{C}_{4} \mathrm{H}_{10}+13 \mathrm{O}_{2} \rightarrow 8 \mathrm{CO}_{2}+10 \mathrm{H}_{2} \mathrm{O}$ is a balancing.
Solution to Question 18. - a. $\operatorname{det}\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)=0 \geqslant 0$ and $\operatorname{det}\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)=0 \geqslant 0$, but $\operatorname{det}\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)=-1 \nsupseteq 0$, so S is not closed under addition.
b. If $\operatorname{det}(A) \geqslant 0$ and $\alpha \in \mathbb{R}$ then $\operatorname{det}(\alpha A)=\alpha^{2} \operatorname{det}(A) \geqslant 0$, so S is closed under scalar multiplication.
Solution to Question 19. - a. The cosine of the angle between \mathbf{u} and \mathbf{v} is $\frac{\mathbf{u}^{T} \mathbf{v}}{\|\mathbf{u}\|\|\mathbf{v}\|}=\frac{-6}{4 \sqrt{ } 3}=-\frac{1}{2} \sqrt{ } 3$, so this angle is $\frac{5}{6} \pi$ (since it is $\geqslant 0$ and $\leqslant \pi$).
b. $(\mathbf{u}+\mathbf{v})^{T}(\mathbf{u}+t \mathbf{v})=\|\mathbf{u}\|^{2}+\mathbf{v}^{T} \mathbf{u}+\left(\mathbf{u}^{T} \mathbf{v}+\|\mathbf{v}\|^{2}\right) t=16-6+(3-6) t=10-3 t$ is positive if $t<\frac{10}{3}$, in which case the, angle between $\mathbf{u}+\mathbf{v}$ and $\mathbf{u}+t \mathbf{v}$ is $\geqslant 0$ and $<\frac{1}{2} \pi$. The angle between $\mathbf{u}+\mathbf{v}$ and $\mathbf{u}+t \mathbf{v}$ is 0 precisely when $\mathbf{u}+t \mathbf{v}$ is a positive multiple of $\mathbf{u}+\mathbf{v}$, i.e., $t=1$ (since \mathbf{u} and \mathbf{v} are linearly independent). So the angle between $\mathbf{u}+\mathbf{v}$ is acute if, and only if, $t<\frac{10}{3}$ and $t \neq 1$.

