Question 1. — Let $A = \begin{pmatrix} a_1 & a_2 & a_3 & a_4 & a_5 \end{pmatrix}$ be the matrix

	(2	-6	3	1	2)	(1	-3	0	0	2)
A =	-3	9	4	5	-5		0	0	1	0	-1
	-1	3	7	6	-3	\sim	0	0	0	1	1 1
	(1	-3	5	4	1)	l	0	0	0	0	0)

and let $\mathbf{b} = 3\mathbf{a}_2 + \mathbf{a}_3 - 2\mathbf{a}_5$.

- a. Give a basis of the null space of *A*.
- b. Find a particular vector \mathbf{p} for which $A\mathbf{p} = \mathbf{b}$.
- c. Write the solution of $A\mathbf{x} = \mathbf{b}$ in parametric vector form.
- d. Give a basis of the row space of *A*.
- e. What is the dimension of the null space of A^T ?

Question 2. — Let
$$A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ -2 & 0 & 3 \end{pmatrix}$$

a. Find A^{-1} .

b. Use A^{-1} to solve the equation $YA = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \end{pmatrix}$ for *Y*.

Question 3. — Consider the linear system

a. For which pairs *h*, *k* does the system have no solution?

b. For which pairs *h*, *k* does the system have a unique solution?

c. For which pairs *h*, *k* is the solution of the system a line?

d. For which pairs h, k is the solution of the system a plane?

Question 4. — Let \mathbf{u} , \mathbf{v} , \mathbf{w} be linearly independent vectors. Find k so that the vectors

 $\mathbf{u} + \mathbf{v} + \mathbf{w}$, $\mathbf{u} + 2\mathbf{v} + k\mathbf{w}$ and $-\mathbf{u} + \mathbf{v} + k\mathbf{w}$

are linearly dependent.

Question 5. — Find the quadratic polynomial whose graph contains the points (1, 1), (2, -9) and (-1, -3).

Question 6. — a. Find the standard matrix of the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ which first performs a vertical expansion by a factor of 4, then reflects vectors in the line $x_2 = -x_1$, and finally performs a horizontal shear which maps \mathbf{e}_2 to $-3\mathbf{e}_1 + \mathbf{e}_2$.

b. Find the standard matrix of a linear transformation which maps the line $\binom{1}{-2} + t\binom{3}{4}$ onto a vertical line.

Question 7. — a. Solve the equation $X^T A + B = (CX)^T - B$ for X. b. Find X from part a if $A = \begin{pmatrix} 1 & 5 \\ 2 & 1 \end{pmatrix}$, $B = \begin{pmatrix} -3 & 5 \\ 3 & 1 \end{pmatrix}$ and $C = \begin{pmatrix} -2 & 3 \\ 1 & 3 \end{pmatrix}$.

Question 8. — Let A be an $n \times n$ matrix such that $A^2 = A$.

- a. Find the possible values of det(A).
- b. Show that if $det(A) \neq 0$ then A = I.

Question 9. — Let A, B and C be 4×4 matrices such that rank(A) = 2, det(B) = -2 and det(C) = 3. Find:

a. det(A); b. det(
$$-3B^3C^{-2}$$
); c. det($A^TC^{-1} + (BA)^T$).

Question 10. — Find a basis of $\{p(x) \in \mathbb{P}_3[x]: p(1) = p(2) \text{ and } p(3) = 0\}$.

Question 11. — If A is a 8×7 matrix and the dimension of Nul (A^T) is 3 then the rank of A is ______ and the dimension of Nul(A) is ______.

Question 12. — Prove that if A and B are invertible $n \times n$ matrices and $(AB)^2 = A^2B^2$ then AB = BA.

Question 13. — Let ℓ be the line given by $\begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} + t \begin{pmatrix} 3 \\ 2 \\ -4 \end{pmatrix}$ and let \wp be the plane defined by $2x_1 + 3x_2 + 3x_3 = 4$.

a. The line ℓ and the plane \wp are (circle the correct answer):

- parallel.
- perpendicular.
- neither parallel nor perpendicular.

b. Circle the correct statement:

- ℓ intersects \wp in exactly one point.
- $-\ell$ does not intersect \wp .
- ℓ is contained in \wp .

Question 14. — Given the lines $\ell_1 : \begin{pmatrix} 3 \\ 1 \\ -2 \end{pmatrix} + t \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}$ and $\ell_2 : \begin{pmatrix} 7 \\ 2 \\ -1 \end{pmatrix} + t \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix}$.

a. Find the point on ℓ_1 which is closest to the origin.

b. Compute the distance between ℓ_1 and ℓ_2 .

Question 15. — Given A(1,-1,2), B(2,1,3), C(4,0,4) and D(-3,3,3).

a. Find the area of triangle ABC.

b. Find a normal equation of the plane which contains *D* and is parallel to the plane containing triangle *ABC*.

c. Compute the cosine of the angle *A* in triangle *ABC*.

Question 16. — Let P_1 be the plane defined by $2x_1 - 3x_2 + 4x_3 = 7$, let P_2 be the plane defined by $x_1 - 2x_2 + x_3 = 3$, and let ℓ be the line of intersection of the planes P_1 and P_2 .

a. Find a parametric vector equation of ℓ .

b. Find a normal equation of the plane which is orthogonal to both P_1 and P_2 and contains the point (1, 1, 1).

c. Give a parametric vector equation of the line which is parallel to both planes P_1 and P_2 and contains the point (1,2,3).

d. Compute the distance between the P_1 and the point (1, 1, 1).

Question 17. — Use linear algebra to balance the chemical equation:

$$C_4H_{10} + O_2 \rightarrow CO_2 + H_2C$$

Question 18. — Let $S = \{A \in M_{2 \times 2} : \det(A) \ge 0\}.$

a. Is S closed under addition? Justify.

b. Is S closed under scalar multiplication? Justify.

Question 19. — Let **u** and **v** be vectors in \mathbb{R}^3 such that $||\mathbf{u}|| = 4$, $||\mathbf{v}|| = \sqrt{3}$ and $\mathbf{u}^T \mathbf{v} = -6$.

a. What is the angle between **u** and **v**? Give a simplified answer.

b. For which values of *t*, if any, is the angle between $\mathbf{u} + \mathbf{v}$ and $\mathbf{u} + t\mathbf{v}$ acute? (An acute angle is an angle between 0 and $\frac{1}{2}\pi$.)

Solution to Question 3. — The augmented matrix of the system is

$$\begin{pmatrix} 1 & 3 & 2 & k+5 \\ -1 & h-1 & h^2-6 & k-1 \\ 3 & 9 & h^2-h & k^2+3k+11 \end{pmatrix} \sim \begin{pmatrix} 1 & 3 & 2 & k+5 \\ 0 & h+2 & (h+2)(h-2) & 2(k+2) \\ 0 & (h+2)(h-3) & (k+2)(k-2) \end{pmatrix}.$$

- a. There is no solution if h = -2 and $k \neq -2$, or else h = 3 and $k \neq \pm 2$.
- b. There is a unique solution if $h \neq -2, 3$ and k is any real number.
- c. The solution is a line if h = 3 and $k = \pm 2$.
- d. The solution is a plane if h = -2 and k = -2.

Solution to Question 4. — { $\mathbf{u} + \mathbf{v} + \mathbf{w}, \mathbf{u} + 2\mathbf{v} + k\mathbf{w}, -\mathbf{u} + \mathbf{v} + k\mathbf{w}$ } = { $\mathbf{u}, \mathbf{v}, \mathbf{w}$ }A, where $A = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 2 & 1 \\ 1 & k & k \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 3 - k \end{pmatrix}$, so k = 3. Solution to Question 5. — Reducing $\begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & -9 \\ 1 & -1 & 1 & -3 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & -4 \end{pmatrix}$

gives $p(x) = 3 + 2x - 4x^2$. Solution to Question 6. — a. $\begin{pmatrix} 1 & -3 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix} = \begin{pmatrix} 3 & -4 \\ -1 & 0 \end{pmatrix}$

shear reflection expansion b. $\mathbf{x} \rightsquigarrow \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \mathbf{x}$ maps the given line onto the line generated by $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

Solution to Question 7. — a. Transposing gives $A^T X + B^T = CX - B^T$, or $(C - A^T)X = 2B^T$, so $X = 2(C - A^T)^{-1}B^T$.

b.
$$X = 2 \left[\begin{pmatrix} -2 & 3 \\ 1 & 3 \end{pmatrix} - \begin{pmatrix} 1 & 5 \\ 2 & 1 \end{pmatrix}^T \right]^{-1} \begin{pmatrix} -3 & 5 \\ 3 & 1 \end{pmatrix}^T = \begin{pmatrix} 11 & -5 \\ 27 & -9 \end{pmatrix}.$$

Solution to Question 8. — a. $(\det(A))^2 = \det(A)$, so $\det(A) = 0$ or 1. b. A(A - I) = 0, so either A = I or else A is singular.

Solution to Question 9. — a. $\det(A) = 0$ since the rank of A is < 4. b. $\det(-3B^3C^{-2}) = (-3)^4(-2)^3(3)^{-2} = -72$. c. $\det(A^TC^{-1} + (BA)^T) = \det(A^T)\det(C^{-1} + B^T) = 0$, since A is singular.

c. $det(A^{+}C^{-+}+(BA)) = det(A^{+})det(C^{-+}+B^{+}) = 0$, since A is singular

Solution to Question 10. — The standard matrix of $p \rightsquigarrow \begin{pmatrix} p(3) \\ p(2) - p(1) \end{pmatrix}$ is $\begin{pmatrix} 1 & 3 & 9 & 27 \\ 0 & 1 & 3 & 7 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & 6 \\ 0 & 1 & 3 & 7 \end{pmatrix}$, whose null space is generated by $\begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix} \begin{pmatrix} -6 \\ 7 \\ 7 \end{pmatrix}$

 $\begin{pmatrix} 0\\-3\\0\\1 \end{pmatrix}$, $\begin{pmatrix} -6\\-7\\0\\1 \end{pmatrix}$; so $-3x + x^2$, $-6 - 7x + x^3$ is a basis of the subspace in question.

Solution to Question 11. — If *A* is a 8×7 matrix and the dimension of Nul(A^T) is 3 then the rank of *A* is 5 (= 8 – 3) and the dimension of Nul(*A*) is 2 (= 7 – 5).

Solution to Question 12. — If $(AB)^2 = A^2B^2$ and A, B are invertible then $A^{-1}AABBB^{-1} = A^{-1}ABABB^{-1}$, or AB = BA.

Solution to Question 13. — Write ℓ : $\mathbf{p} + t\mathbf{v}$ and \wp : $\mathbf{n}^T \mathbf{x} = 4$.

a. $\mathbf{n}^T \mathbf{v} = 0$, so \mathbf{v} is orthogonal to \mathbf{n} ; therefore, ℓ is parallel to φ . b. Since ℓ is parallel to φ and $\mathbf{n}^T \mathbf{p} = 5 \neq 4$, ℓ does not intersect φ .

Solution to Question 14. — Write $\ell_1 : \mathbf{p}_1 + t\mathbf{v}_1$ and $\ell_2 : \mathbf{p}_2 + t\mathbf{v}_2$.

a. The point on ℓ_1 which is closest to the origin is

$$\mathbf{p}_1 - \operatorname{proj}_{\mathbf{v}_1}(\mathbf{p}_1) = \begin{pmatrix} 3\\1\\-2 \end{pmatrix} - \frac{2}{3} \begin{pmatrix} 2\\2\\1 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 5\\-1\\-8 \end{pmatrix}.$$

b. Since $\mathbf{n} = \frac{1}{3}\mathbf{v}_1 \times \mathbf{v}_2 = \begin{pmatrix} 2\\ -1\\ -2 \end{pmatrix}$ is orthogonal to both lines, the distance is

$$\left\| \operatorname{proj}_{\mathbf{n}}(\mathbf{p}_{2} - \mathbf{p}_{1}) \right\| = \frac{\left| \mathbf{n}^{T} \mathbf{p}_{2} - \mathbf{n}^{T} \mathbf{p}_{1} \right|}{\left\| \mathbf{n} \right\|} = \frac{\left| 14 - 9 \right|}{3} = \frac{5}{3}.$$

Solution to Question 15. — Let

$$\mathbf{u} = \overrightarrow{AB} = \begin{pmatrix} 1\\2\\1 \end{pmatrix}, \quad \mathbf{v} = \overrightarrow{AC} = \begin{pmatrix} 3\\1\\2 \end{pmatrix} \quad \text{and} \quad \mathbf{n} = \mathbf{u} \times \mathbf{v} = \begin{pmatrix} 3\\1\\-5 \end{pmatrix}$$

a. The area of $\triangle ABC$ is $\frac{1}{2} ||\mathbf{n}|| = \frac{1}{2} \sqrt{35}$.

b. The plane which is parallel to $\triangle ABC$ and contains *D* is defined by the normal equation $\mathbf{n}^T \mathbf{x} = \mathbf{n}^T \overrightarrow{OD}$, or $3x_1 + x_2 - 5x_3 = -21$.

c. The cosine of
$$\angle BAC$$
 is $\frac{\mathbf{u}^T \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|} = \frac{1}{6}\sqrt{21}$.

Solution to Question 16. — a. Reducing $\begin{pmatrix} 2 & -3 & 4 & 7 \\ 1 & -2 & 1 & 3 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 5 & 5 \\ 0 & 1 & 2 & 1 \end{pmatrix}$ gives ℓ : $\mathbf{p} + t\mathbf{v}$, where $\mathbf{p} = \begin{pmatrix} 5 \\ 1 \\ 0 \end{pmatrix}$ and $\mathbf{v} = \begin{pmatrix} 5 \\ 2 \\ -1 \end{pmatrix}$.

b. A normal equation of the plane is $\mathbf{v}^T \mathbf{x} = \mathbf{v}^T \begin{pmatrix} 1\\1\\1 \end{pmatrix}$, or $5x_1 + 2x_2 - x_3 = 6$, since \mathbf{v} is orthogonal to any plane which is orthogonal to both P_1 and P_2 .

c. The line is given by $\begin{pmatrix} 1\\2\\3 \end{pmatrix} + t \begin{pmatrix} 5\\2\\-1 \end{pmatrix}$, since **v** is parallel to both P_1 and P_2 . $|\mathbf{n}_1^T \begin{pmatrix} 1\\1 \end{pmatrix} - 7|$

d. The distance is
$$\frac{|\mathbf{n}_1| (\frac{1}{1})^{-\gamma}|}{||\mathbf{n}_1||} = \frac{4}{29}\sqrt{29}$$
, where \mathbf{n}_1 is the normal to P_1 .

Solution to Question 17. — Reducing

$$\begin{array}{c} C \\ H \\ O \end{array} \begin{pmatrix} 4 & 0 & -1 & 0 \\ 10 & 0 & 0 & -2 \\ 0 & 2 & -2 & -1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & -\frac{1}{5} \\ 0 & 1 & 0 & -\frac{13}{10} \\ 0 & 0 & 1 & -\frac{4}{5} \end{pmatrix} \quad \text{gives the generator} \quad \begin{pmatrix} 2 \\ 13 \\ 8 \\ 10 \end{pmatrix}$$

of its null space. So $2C_4H_{10} + 13O_2 \rightarrow 8CO_2 + 10H_2O$ is a balancing.

Solution to Question 18. — a. $det \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = 0 \ge 0$ and $det \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = 0 \ge 0$, but $det \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = -1 \ge 0$, so *S* is not closed under addition.

b. If $det(A) \ge 0$ and $\alpha \in \mathbb{R}$ then $det(\alpha A) = \alpha^2 det(A) \ge 0$, so *S* is closed under scalar multiplication.

Solution to Question 19. — a. The cosine of the angle between **u** and **v** is $\frac{\mathbf{u}^T \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|} = \frac{-6}{4\sqrt{3}} = -\frac{1}{2}\sqrt{3}$, so this angle is $\frac{5}{6}\pi$ (since it is ≥ 0 and $\le \pi$).

b. $(\mathbf{u} + \mathbf{v})^T (\mathbf{u} + t\mathbf{v}) = ||\mathbf{u}||^2 + \mathbf{v}^T \mathbf{u} + (\mathbf{u}^T \mathbf{v} + ||\mathbf{v}||^2)t = 16 - 6 + (3 - 6)t = 10 - 3t$ is positive if $t < \frac{10}{3}$, in which case the, angle between $\mathbf{u} + \mathbf{v}$ and $\mathbf{u} + t\mathbf{v}$ is ≥ 0 and $< \frac{1}{2}\pi$. The angle between $\mathbf{u} + \mathbf{v}$ and $\mathbf{u} + t\mathbf{v}$ is 0 precisely when $\mathbf{u} + t\mathbf{v}$ is a positive multiple of $\mathbf{u} + \mathbf{v}$, *i.e.*, t = 1 (since \mathbf{u} and \mathbf{v} are linearly independent). So the angle between $\mathbf{u} + \mathbf{v}$ is acute if, and only if, $t < \frac{10}{3}$ and $t \neq 1$.